Mass spectra of new heterocycles: XXXI. Fragmentation of functionalized 2,3-dihydropyridines by electron ionization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Behavior of previously unknown and unavailable 5,6-di-, 2,5,6-tri-, and 2,2,5,6-tetra-substituted 2,3-dihydropyridines, synthesized from allenic or acetylenic carbanions, isothiocyanates, and alkylating agents, under the action of electron ionization (70 eV) was studied for the first time. Analysis of the mass spectra of the studied 2,3-dihydropyridines revealed the key patterns of their fragmentation under electron impact. All the studied compounds form detectable molecular ions M+•, the stability of which and the directions of decomposition depend significantly on the nature and position of the substituents in the heterocycle. For 2-R2-6-(methylsulfanyl)-5-methoxy-2,3-dihydropyridines (2-R1 = H, 2-R2 ≠ OMe), the formation of [M - Me]+, [M - SH]+ and [M - R2]+ ions is characteristic. In the presence of bulky substituents in position 2 or 5 (2-R2 ≠ Me or 5-OAlk > OMe), the competing processes become the elimination of the Alk radical [M - Alk]+ and the alkene molecule [M - CnH2n]+•. The main direction of fragmentation of molecular ions of 2-methoxy-substituted 5-alkoxy-6-(methylsulfanyl)-2,3-dihydropyridines [Alk = Et, Bu, EtOCH(Me)] is the elimination of a methanol molecule from position 2 of the heterocycle. In the case of 2,5-dimethoxy-6-(methylsulfanyl)-2,3-dihydropyridine, instead of forming the [M - MeOH]+• ion, competition between the abstraction of Me and OMe radicals is observed. Compounds with acetal substituents in position 5 are characterized by decomposition by mechanisms typical of acetal decomposition, including rearrangements similar to the McLafferty rearrangement. For 2,2-dimethyl-5,6-bis(methylsulfanyl)-2,3-dihydropyridine, destruction of the heterocycle with the release of a MeSCN molecule is observed. In the absence of a substituent at position 2, the decomposition of the molecular ion of 5,6-bis(methylsulfanyl)-2,3-dihydropyridine leads to the ions [M - Me]+ and [M - SMe]+. The degradation products of the dihydropyridine ring, including the ion [M - MeSCN]+•, were not identified in the mass spectrum of this compound. 5-Phenyl- and 5-(1-Me-pyrrol-2-yl)-6-(methylsulfanyl)-2,3-dihydropyridines under electron ionization conditions form the most stable molecular ions (Irel 93-100%), the primary decomposition of which occurs in four (when 2-R2 = Me) and seven (when 2-R2 = CH2=CHOCH2) directions. Aromatization of 2-unsubstituted and 2-monosubstituted 2,3-dihydropyridines at high temperature (under chromatographic sample injection conditions) and/or by electron ionization has been discovered and experimentally confirmed. The process of aromatization proceeds according to the four main mechanisms, including the elimination of hydrogen molecules, methanol (from positions 2 and 5), as well as molecules formed from the substituent in position 2, which leads to the formation of 2,3-di-, 2,6-di- and 2,3,6-trisubstituted pyridines.

About the authors

L. V Klyba

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: klyba@irioch.irk.ru
ORCID iD: 0000-0002-5521-3201
Irkutsk, Russia

E. R Sanzheeva

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: klyba@irioch.irk.ru
ORCID iD: 0000-0002-9776-2794
Irkutsk, Russia

N. A Nedolya

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: klyba@irioch.irk.ru
ORCID iD: 0000-0003-2614-7265
Irkutsk, Russia

O. A Tarasova

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: klyba@irioch.irk.ru
ORCID iD: 0000-0003-4895-3217
Irkutsk, Russia

References

  1. Klyba L.V., Sanzheeva E.R., Nedolya N.A., Tarasova O.A. Russ. J. Org. Chem. 2025, 61, 1427–1439. https://doi.org/10.1134/S1070428025601669
  2. Eisner U., Kuthan J. Chem. Rev. 1972, 72, 1–42. https://doi.org/10.1021/cr60275a001
  3. Kuthan J., Kurfurst A. Ind. Eng. Chem. Prod. RD. 1982, 21, 191–261. https://doi.org/10.1021/i300006a012
  4. Stout D.M., Meyers A.I. Chem. Rev. 1982, 82, 223–243. https://doi.org/10.1021/cr00048a004
  5. Weis A. L. ADV Heterocyclic Chem. 1985, 38, 1–103. https://doi.org/10.1016/S0065-2725(08)60917-4
  6. Lavilla R. J. Chem. Soc., Perkin Trans. 1. 2002, 1141–1156. https://doi.org/10.1039/b101371h
  7. Silva E.M.P., Rocha D.H.A., Silva A.M.S. Synthesis. 2018, 50, 1773–1782. https://doi.org/10.1055/s-0037-1609418
  8. Ling Y., Hao Z.-Y., Liang D., Zhang C.-L., Liu Y.-F., Wang Y. Drug Des. Devel. Ther. 2021, 15, 4289–4338. https://doi.org/10.2147/DDDT.S329547
  9. Ioan P., Carosati E., Micucci M., Cruciani G., Broccatelli F., Zhorov B.S., Chiarini A., Budriesi R. Curr. Med. Chem. 2011, 18, 4901–4922. https://doi.org/10.2174/092986711797535173
  10. Khedkar S.A., Auti P.B. Mini Rev. Med. Chem. 2014, 14, 282–290. https://doi.org/10.2174/138955751366613111920412631
  11. Mishra A.P., Bajpai A., Rai A.K. Mini Rev. Med. Chem. 2019, 19, 1219–1254. https://doi.org/10.2174/138955751966619042518474930
  12. Edraki N., Mehdipour A.R., Khoshneviszadeh M., Miri R. Drug Discov. Today. 2009, 14, 1058–1066. https://doi.org/10.1016/j.drudis.2009.08.00432
  13. Yet L. 1,4-Dihydropyridines. In: Privileged Structures in Drug Discovery. Hoboken, John Wiley & Sons: N.J., 2018, 59–82. https://doi.org/10.1002/9781118686263.ch354
  14. Peters J., Booth A., Peters R. Ther. Adv. Chronic. Dis. 2015, 6, 160–169. https://doi.org/10.1177/204062231558235325
  15. Viradiya D., Mirza S., Shaikh F., Kakadiya R., Rathod A., Jain N., Rawal R., Shah A. Anticancer Agents Med. Chem. 2017, 17, 1003–1013. https://doi.org/10.2174/1871520616666161206143251
  16. Bull J.A., Mousseau J.J., Pelletier G., Charette A.B. Chem. Rev. 2012, 112, 2642–2713. https://doi.org/10.1021/cr200251d
  17. Comins D.L., Higuchi K., Young D.W. Adv. Heterocycl. Chem. 2013, 110, 175–235. https://doi.org/10.1016/B978-0-12-408100-0.00006-911
  18. Wan J.P., Liu Y. RSC Adv. 2012, 2, 9763–9777. https://doi.org/10.1039/c2ra21406g17
  19. Palacios F., Alonso C., Rubiales G., Ezpeleta J.M. Eur. J. Org. Chem. 2001, 2115–2122. https://doi.org/10.1002/1099-0690(200106)2001:11<2115
  20. Недоля Н.А. ЖОрХ. 2023, 59, 1319–1350. Nedolya N.A. Russ. J. Org. Chem. 2023, 59, 1676–1703. https://doi.org/10.1134/S1070428023100032
  21. Клыба Л.В., Недоля Н.А., Тарасова О.А., Жанчипова Е.Р., Волостных О.Г. ЖОрХ. 2010, 46, 1039–1049. Klyba L.V., Nedolya N.A., Tarasova O.A., Zhanchipova E.R., Volostnykh O.G. Russ. J. Org. Chem. 2010, 46, 1038–1048. https://doi.org/10.1134/S1070428010070134
  22. Клыба Л.В., Недоля Н.А., Жанчипова Е.Р. ЖОрХ. 2008, 44, 135–142. Klyba L.V., Nedolya N.A., Zhanchipova E.R. Russ. J. Org. Chem. 2008, 44, 133–140. https://doi.org/10.1134/S1070428008010181
  23. Клыба Л.В., Недоля Н.А., Шляхтина Н.И., Жанчипова Е.Р. ЖОрХ. 2005, 41, 1576–1582. Klyba L.V., Nedolya N.A., Shlyakhtina N.I., Zhanchipova E.R. Russ. J. Org. Chem. 2005, 41, 1544–1550. https://doi.org/10.1007/s11178-005-0380-y
  24. Клыба Л.В., Санжеева Е.Р., Недоля Н.А., Тарасова О.А. ЖОрХ. 2025, 61, C. 687–700. https://doi.org/10.7868/S3034630425060055 Klyba L.V., Sanzheeva E.R., Nedolya N.A., Tarasova O.A. Russ. J. Org. Chem. 2025, 61, 800–812. https://doi.org/10.1134/S1234567825600816
  25. Kingston D.G.I., Bursey J.T., Bursey M.M. II. Chem. Rev. 1974, 74, 215. https://scholar.google.com/scholar_lookup?&title=&journal=Chem.%20Rev.&volume=74&publication_year=1974&author=Kingston%2CD.%20G.%20I.&author=Bursey%2CJ.%20T.&author=Bursey%2CM.%20M.
  26. Вацуро К.В., Мищенко Г.Л. Именные реакции в органической химии. М.: Химия, 1976, 265.
  27. Вульфсон Н.С., Заикин В.Г., Микая А.И. Массспектрометрия органических соединений. М: Химия, 1986.
  28. Заикин В.Г., Варламов А.В., Микая А.И., Простаков Н.С. Основы масс-спектрометрии органических соединений. М.: МАИК .Наука/Интерпериодика., 2001.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).