The Interaction of Aroylpyruvic Acids with 3- and 4-Nitrobenzohydrazides. Synthesis of Pyrazoline-5-Carboxylic Acids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

4-Aryl-2,4-dioxobutanoic acids react with 3-nitro- and 4-nitrobenzohydrazides in a 1:2 ratio to form the corresponding 3-aryl-1-(3-nitrobenzoyl)-5-(2-(3-nitrobenzoyl)hydrazinyl)-4,5-dihydro-1H-pyrazole-5-carboxylic acids and 3-aryl-1-(4-nitrobenzoyl)-5-(2-(4-nitrobenzoyl)hydrazinyl)-4,5-dihydro-1H-pyrazole-5-carboxylic acids, the structure of which is confirmed by X-ray diffraction analysis. The reaction proceeds under mild conditions with high yields without the use of catalysts and additives, and the isolation process does not require column chromatography. The obtained compounds are promising in terms of the manifestation of various types of biological activity.

About the authors

A. A Andreeva

Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences – Branch of the Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences; Perm State National Research University

Email: koh2@psu.ru
ORCID iD: 0000-0003-0665-6273
Perm, Russia; Perm, Russia

Yu. V Shklyaev

Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences – Branch of the Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: koh2@psu.ru
ORCID iD: 0000-0001-7016-1190
Perm, Russia

A. N Maslivets

Perm State National Research University

Author for correspondence.
Email: koh2@psu.ru
ORCID iD: 0000-0001-7148-4450
Perm, Russia

References

  1. Ali M.A., Shaharyar M., Siddiqui A.A. Eur. J. Med. Chem. 2007, 42, 268–275. https://doi.org/10.1016/j.ejmech.2006.08.004
  2. El-Sabbagh O.I., Baraka M.M., Ibrahim S.M., Pannecouque C., Andrei G., Snoeck R., Balzarini J., Rashad A.A. Eur. J. Med. Chem. 2009, 44, 3746–3753. https://doi.org/10.1016/j.ejmech.2009.03.038
  3. Idemudia O., Sadimenko A., Hosten E. Int. J. Mol. Sci. 2016, 17, 687–711. https://doi.org/10.3390/ijms17050687
  4. Ansari M.I., Khan S.A. Med. Chem. Res. 2017, 26, 1481–1496. https://doi.org/10.1007/s00044-017-1855-4
  5. Nehra B., Rulhania S., Jaswal S., Kumar B., Singh G., Monga V. Eur. J. Med. Chem. 2020, 205, 112666. https://doi.org/10.1016/j.ejmech.2020.112666
  6. Wang H.H., Qiu K.M., Cui H.E., Yang Y.S., Yin-Luo, Xing M., Qiu X.Y., Bai L.F., Zhu H.L. Bioorg. Med. Chem. 2013, 21, 448–455. https://doi.org/10.1016/j.bmc.2012.11.020
  7. Nasab N.H., Azimian F., Shim R.S., Eom Y.S., Shah F.H., Kim S.J. Bioorg. Med. Chem. Lett. 2023, 80, 129105. https://doi.org/10.1016/j.bmcl.2022.129105
  8. Anant A., Ali A., Ali A., Gupta G., Asati V.A. J. Mol. Struct. 2021, 1245–1266. https://doi.org/10.1016/j.molstruc.2021.131079
  9. Davies J., Caseley J.C. Pestic Sci. 1999, 55 (11), 1043–1058. https://doi.org/10.1002/(SICI)1096-9063(199911)55:11<1043::AID-PS60>3.0.CO;2-L
  10. Taylor V.L., Cummins I., Brazier-Hicks M., Edwards R. Environ. Exp. Bot. 2013, 88, 93−99. https://doi.org/10.1016/j.envexpbot.2011.12.030
  11. Wang H.C., Li J., Lv B., Lou Y.L., Dong L.Y. Pestic. Biochem. Physiol. 2013, 107, 334−342. https://doi.org/10.1016/j.pestbp.2013.10.001
  12. Fu Y., Zhang D., Kang T., Guo Y.-Y., Chen W.-G., Gao S., Ye F. Bioorg. Med. Chem. Lett. 2019, 29, 570−576. https://doi.org/10.1016/j.bmcl.2018.12.061
  13. Якимович С.И., Николаев В.Н. ЖОрХ. 1981, 17 (2), 284–291.
  14. Перевалов С.Г., Бургарт Я.В., Салоутин В.И., Чупахин О.Н. Успехи хим. 2001, 70 (11), 1039–1058. Perevalov S.G., Burgart Ya.V., Saloutin V.I., Chupakhin O.N. Russ. Chem. Rev. 2001, 70, 921–938. https://doi.org/10 .1070/RC2001v070n11ABEH000685
  15. Игидов С.Н., Турышев А.Ю., Махмудов Р.Р., Шипиловских Д.А., Дмитриев М.В., Зверева О.В., Силайчев П.С., Игидов Н.М., Шипиловских С.А. ЖОХ. 2023, 93, 188–199. Igidov S.N., Turyshev A.Y., Makhmudov R.R., Shipilovskikh D.A., Dmitriev M.V., Zvereva O.V., Silaichev P.S., Igidov N.M., Shipilovskikh S.A. Russ. J. Gen. Chem. 2023, 93, 253–262. https://doi.org/10.1134/S1070363223020044
  16. Beyer C., Claisen L. Ber. Dtsch. Chem. Ges. 1887, 20, 2178–2188.
  17. CrysAlisPro, Rigaku Oxford Diffraction, 2022, Version 1.171.42.74a.
  18. Sheldrick G.M. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3–8. https://doi.org/10.1107/S2053273314026370
  19. Sheldrick G.M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8. https://doi.org/10.1107/S2053229614024218
  20. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. J. Appl. Cryst. 2009, 42, 339–341. https://doi.org/10.1107/S0021889808042726

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).