Development of Microplate Immunoenzyme Determination of Nonylphenol with Magnetic Sample Concentration

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nonylphenol is an aromatic organic compound that has an estrogen-like effect and has a negative effect on the human endocrine system. A method has been developed for the competitive determination of nonylphenol using magnetic particles, rabbit antiserum, nonylphenol conjugate with soybean trypsin inhibitor (STI) and biotin. The principle of the analysis is the formation of immune complexes on the surface of magnetite particles due to covalent immobilization of protein G through the oriented immobilization of polyclonal antibodies from rabbit serum during a competitive reaction between the free analyte (nonylphenol) and the bound one (as part of the nonylphenol-STI-biotin conjugate) for the binding sites of specific antibodies. The detection of formed immune complexes is proposed to be carried out using a streptavidin-polyperoxidase conjugate, which makes it possible to achieve a nine-fold gain in the level of the analytical signal. The developed ELISA using magnetite particles allows us to achieve a detection limit of nonylphenol at the level of 3.8 ng/ml, which is 14.5 times lower in comparison with the classical competitive ELISA (55 ng/ml). Based on the results of the experimental work, the optimized volume of the test sample was 500 μl, which makes it possible to concentrate low-contaminated samples by 17 times.

Full Text

Restricted Access

About the authors

A. N. Berlina

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Author for correspondence.
Email: dzantiev@inbi.ras.ru
Russian Federation, Moscow

L. V. Barshevskaya

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Email: dzantiev@inbi.ras.ru
Russian Federation, Moscow

K. V. Serebrennikova

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Email: dzantiev@inbi.ras.ru
Russian Federation, Moscow

N. S. Komova

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Email: dzantiev@inbi.ras.ru
Russian Federation, Moscow

A. V. Zherdev

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Email: dzantiev@inbi.ras.ru
Russian Federation, Moscow

B. B. Dzantiev

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Email: dzantiev@inbi.ras.ru
Russian Federation, Moscow

References

  1. Evans A.E.V., Mateo-Sagasta J., Qadir M., Boelee E., Ippolito A. // Curr. Opin. Environ. Sustain. 2019. V. 36. P. 20–27.
  2. Zamora-Ledezma C., Negrete-Bolagay D., Figueroa F., Zamora-Ledezma E., Ni M., Alexis F., Guerrero V.H. // Environ. Technol. Innov. 2021. V. 22. Article 101504. https://doi.org/10.1016/j.eti.2021.101504
  3. Fang W., Peng Y., Muir D., Lin J., Zhang X. // Environ. Int. 2019. V. 131. Article 104994. https://doi.org/10.1016/j.envint.2019.104994
  4. Fuller R., Landrigan P.J., Balakrishnan K., Bathan G., Bose-O’Reilly S., Brauer M. et al. // Lancet Planet. Health. 2022. V. 6. № 6. P. e535–e547.
  5. Palani G., Arputhalatha A., Kannan K., Lakkaboyana S.K., Hanafiah M.M., Kumar V., Marella R.K. // Molecules. 2021. V 26. № 9. Article 2799. https://doi.org/10.3390/molecules26092799
  6. Babuji P., Thirumalaisamy S., Duraisamy K., Periyasamy G. // Water. 2023. V. 15. № 14. Article 2532. https://doi.org/10.3390/w15142532
  7. Bhandari G., Bagheri A.R., Bhatt P., Bilal M. // Chemosphere. 2021. V. 275. Article 130013. https://doi.org/10.1016/j.chemosphere.2021.130013
  8. Gałązka A., Jankiewicz U. // Microorganisms. 2022. V. 10. № 11. Article 2236. https://doi.org/10.3390/microorganisms10112236
  9. Morin-Crini N., Lichtfouse E., Liu G., Balaram V., Ribeiro A.R. L., Lu Z. et al.. // Environ. Chem. Lett. 2022. V. 20. № 4. P. 2311–2338.
  10. Chen Y., Yang J., Yao B., Zhi D., Luo L., Zhou Y. // Environ. Pollut. 2022. V. 310. Article 119918. https://doi.org/10.1016/j.envpol.2022.119918
  11. Hong Y., Feng C., Yan Z., Wang Y., Liu D., Liao W., Bai Y. // Environ. Chem. Lett. 2020. V. 18. № 6. P. 2095–2106.
  12. Careghini A., Mastorgio A.F., Saponaro S., Sezenna E. // Environ. Sci. Pollut. Res. 2015. V. 22. № 8. P. 5711–5741.
  13. Jardak K., Drogui P., Daghrir R. // Environ. Sci. Pollut. Res. 2016. V. 23. № 4. P. 3195–3216.
  14. Lu D., Yu L., Li M., Zhai Q., Tian F., Chen W. // Chemosphere. 2021. V. 275. Article 129973. https://doi.org/10.1016/j.chemosphere.2021.129973
  15. Noorimotlagh Z., Mirzaee S.A., Martinez S.S., Rachoń D., Hoseinzadeh M., Jaafarzadeh N. // Environ Res. 2020. V. 184. Article 109263. https://doi.org/10.1016/j.envres.2020.109263
  16. Directive 2013/39/eu of the European parliament and of the council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy.
  17. Shih H.-K., Shu T.-Y., Ponnusamy V. K., Jen J.-F. // Anal. Chim. Acta. 2015. V. 854. P. 70–77.
  18. Vargas-Berrones K., Díaz de León-Martínez L., Bernal-Jácome L., Rodriguez-Aguilar M., Ávila-Galarza A., Flores-Ramírez R. // Talanta. 2020. V. 209. Article 120546. https://doi.org/10.1016/j.talanta.2019.120546
  19. Aparicio I., Martín J., Santos J.L., Malvar J.L., Alonso E. // J. Chromatogr. A. 2017. V. 1500. P. 43–52.
  20. Yin H.-L., Zhou T.-N. // Chinese J. Anal. Chem. 2022. V. 50. № 8. Article 100112. https://doi.org/10.1016/j.cjac.2022.100112
  21. Céspedes R., Skryjová K., Raková M., Zeravik J., Fránek M., Lacorte S., Barceló D. // Talanta. 2006. V. 70. № 4. P. 745–751.
  22. Matsui K., Kawaji I., Utsumi Y., Ukita Y., Asano T., Takeo M., Kato D.-i., Negoro S. // J. Biosci. Bioeng. 2007. V. 104. № 4. P. 347–350.
  23. Yakovleva J.N., Lobanova A.Y., Shutaleva E.A., Kourkina M.A., Mart’ianov A.A., Zherdev A.V., Dzantiev B.B., Eremin S.A. // Anal. Bioanal. Chem. 2004. V. 378. № 3. P. 634–641.
  24. Ermolaeva T.N., Dergunova E.S., Kalmykova E.N., Eremin S.A. // J. Anal. Chem. 2006. V. 61. № 6. P. 609–613.
  25. Badea M., Nistor C., Goda Y., Fujimoto S., Dosho S., Danet A., Barceló D., Ventura F., Emnéus J. // Analyst. 2003. V. 128. № 7. P. 849–856.
  26. Mart’ianov A.A., Zherdev A.V., Eremin S.A., Dzantiev B.B. // Int. J. Env. Anal. Chem. 2004. V. 84. № 13. P. 965–978.
  27. Mart’ianov A.A., Dzantiev B.B., Zherdev A.V., Eremin S.A., Cespedes R., Petrovic M., Barcelo D. // Talanta. 2005. V. 65. № 2. P. 367–374.
  28. Berlina A.N., Komova N.S., Serebrennikova K.V., Zherdev A.V., Dzantiev B.B. // Engineering Proceedings. 2023. V. 48. № 1. Article 9. https://doi.org/10.3390/CSAC2023–14919.
  29. Berlina A.N., Ragozina M.Y., Gusev D.I., Zherdev A.V., Dzantiev B.B. // Chemosensors. 2023. V. 11. № 7. Article 393. https://doi.org/10.3390/chemosensors11070393.
  30. Kuang H., Liu L., Xu L., Ma W., Guo L., Wang L., Xu C. // Sensors. 2013. V. 13. № 7. P. 8331–8339.
  31. Kato M., Ihara Y., Nakata E., Miyazawa M., Sasaki M., Kodaira T., Nakazawa H. // Food and Agricultural Immunology. 2007. V. 18. № 3–4. P. 179–187.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of ELISA with magnetic preconcentration.

Download (16KB)
3. Fig. 2. Absorption spectrum of the NF-SIT conjugate. The cuvette thickness is 1 mm, the concentration of the conjugate in 10 mM FBS is 1.2 mg/ml.

Download (2KB)
4. Fig. 3. Characterization of antiserum by ELISA: linear section of the competitive interaction curve (n = 3).

Download (1KB)
5. Fig. 4. Testing the preservation of immunochemical activity of the hapten-protein conjugate before and after biotinylation (n = 2).

Download (16KB)
6. Fig. 5. Testing of biotin-streptavidin binding in the NF-SIT-biotin preparation and selection of concentrations of the ST-HRP conjugate (A) and ST-rHRP (B) (n = 2).

Download (5KB)
7. Fig. 6. Selection of the optimal concentration of the G-IgG protein (based on the concentration of magnetic particles) (n = 3).

Download (12KB)
8. Fig. 7. Determination of the optimal concentration of the NF-SIT-biotin conjugate (n = 2). The dotted line indicates the cutoff at optical density 1.0.

Download (13KB)
9. Fig. 8. Calibration curve for the determination of NF using the developed system based on MP (n = 3).

Download (1KB)
10. Fig. 9. Dependence of the analytical signal in the developed ELISA based on MPs on the volume in which the concentration took place (n = 3).

Download (14KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».