Phylogenetic Composition of Microbial Communities from Fouling of Titanium Plates in the Coastal Zone of the Black and White Seas

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

With high-throughput sequencing of the variable region V3–V4 of the 16S rRNA gene, the study of the full phylogenetic composition of microbial communities developed on the surface of titanium plates exposed in the water column of the coastal zone of the Black and White Seas was carried out. The presence of potentially corrosive microorganisms from various physiological groups, such as sulfate-reducing bacteria, acidophilic iron-oxidizing bacteria and archaea, sulfur-oxidizing and nitrifying bacteria, was shown in these foulings. In the foulings of titanium plates exposed in the Black Sea, the most common microorganisms were uncultivated sulfate-reducing bacteria of the order Desulfotomaculales, which accounted for 8.13% of all 16S rRNA gene sequence reads, as well as acidophilic iron-oxidizing bacteria of the genera Acidiferrobacter (5.47%), Acidithiobacillus (4.52%) and Acidiphilium (2.55%). Acidophilic archaea accounted for up to 7.97% of all reads. In the foulings of titanium plates exposed in the White Sea, the most common were also acidophilic bacteria from the orders Acidiferrobacterales and Acidithiobacillales (7.68%), as well as acidophilic archaea from the order Thermoplasmatales (7.43%). Uncultivated sulfate-reducing bacteria of the order Desulfotomaculales were also represented in relatively high numbers (6.61% of all reads).

Full Text

Restricted Access

About the authors

A. L. Bryukhanov

Lomonosov Moscow State University

Author for correspondence.
Email: tashino@mail.ru

Faculty of Biology

Russian Federation, Moscow, 119234

A. S. Shutova

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: tashino@mail.ru
Russian Federation, Moscow, 119071

K. A. Komarova

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: tashino@mail.ru
Russian Federation, Москва, 119071

T. A. Semenova

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: tashino@mail.ru
Russian Federation, Москва, 119071

A. A. Semenov

Lomonosov Moscow State University

Email: tashino@mail.ru

Faculty of Biology

Russian Federation, Moscow, 119234

V. A. Karpov

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: tashino@mail.ru
Russian Federation, Moscow, 119071

References

  1. Enning D., Garrelfs J. // Appl. Environ. Microbiol. 2014. V. 80. № 4. P. 1226–1236. https://doi.org/10.1128/AEM.02848-13
  2. Tsarovtceva I.M., Bryukhanov A.L., Vlasov D.Y., Maiyorova M.A. // Power Technol. Eng. 2023. V. 57. № 2. P. 203–208. https://doi.org/10.1007/s10749-023-01643-4
  3. Vlasov D.Y., Bryukhanov A.L., Nyanikova G.G., Zelenskaya M.S., Tsarovtseva I.M., Izatulina A.R. // Appl. Biochem. Microbiol. 2023. V. 59. № 4. P. 425–437. https://doi.org/10.1134/S0003683823040166
  4. Emerson D. // Biofouling. 2018. V. 34. № 9. P. 989–1000. https://doi.org/10.1080/08927014.2018.1526281
  5. Zhang Y., Griffin A., Edwards M. // Environ. Sci. Technol. 2008. V. 42. № 12. P. 4280–4284. https://doi.org/10.1021/es702483d
  6. Magoč T., Salzberg S.L. // Bioinformatics. 2011. V. 27. № 21. P. 2957–2963. https://doi.org/10.1093/bioinformatics/btr507
  7. Edgar R.C. // Bioinformatics. 2010. V. 26. № 19. P. 2460–2461. https://doi.org/10.1093/bioinformatics/btq461
  8. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. // Appl. Environ. Microbiol. 2007. V. 73. № 16. P. 5261–5267. https://doi.org/10.1128/AEM.00062-07
  9. Liu H., Meng G, Li W., Gu T., Liu H. // Front. Microbiol. 2019. V. 10. P. 1298. https://doi.org/10.3389/fmicb.2019.01298
  10. Barton L.L., Hamilton W.A. In: Sulphate-reducing Bacteria: Environmental and Engineered Systems. / Ed. L.L. Barton, W.A. Hamilton. Cambridge: Cambridge University Press, 2007. 533 p.
  11. Hallberg K.B., Hedrich S., Johnson D.B. // Extremophiles. 2011. V. 15. № 2. P. 271–279. https://doi.org/10.1007/s00792-011-0359-2
  12. Williams K.P., Kelly D.P. // Int. J. Syst. Evol. Microbiol. 2013. V. 63. № 8. P. 2901–2906. https://doi.org/10.1099/ijs.0.049270-0
  13. Jones D.S., Albrecht H.L., Dawson K.S., Schaperdoth I., Freeman K.H., Pi Y., Pearson A., Macalady J.L. // ISME J. 2012. V. 6. № 1. P. 158–170. https://doi.org/10.1038/ismej.2011.75
  14. Gadd G.M. // Geoderma. 2004. V. 122. № 2–4. P. 109–119. https://doi.org/10.1016/j.geoderma.2004.01.002
  15. Li X., Kappler U., Jiang G., Bond P.L. // Front. Microbiol. 2017. V. 8. P. 683. https://doi.org/10.3389/fmicb.2017.00683
  16. Magnuson T.S., Swenson M.W., Paszczynski A.J., Deobald L.A., Kerk D., Cummings D.E. // Biometals. 2010. V. 23. № 6. P. 1129–1138. https://doi.org/10.1007/s10534-010-9360-y
  17. Dopson M., Baker-Austin C., Hind A., Bowman J.P., Bond P.L. // Appl. Environ. Microbiol. 2004. V. 70. № 4. P. 2079–2088. https://doi.org/10.1128/AEM.70.4.2079-2088.2004
  18. Golyshina O.V. // Appl. Environ. Microbiol. 2011. V. 77. № 15. P. 5071–5078. https://doi.org/10.1128/AEM.00726-11
  19. Zhang L., Wu J., Wang Y., Wan L., Mao F., Zhang W., Chen X., Zhou H. // Hydrometallurgy. 2014. V. 146. P. 15–23. https://doi.org/10.1016/j.hydromet.2014.02.013
  20. Golyshina O.V., Yakimov M.M., Lünsdorf H., Ferrer M., Nimtz M., Timmis K.N., et al. // Int. J. Syst. Evol. Microbiol. 2009. V. 59. № 11. P. 2815–2823. https://doi.org/10.1099/ijs.0.009639-0
  21. Ojumu T.V., Petersen J. // Hydrometallurgy. 2011. V. 106. № 1–2. P. 5–11. https://doi.org/10.1016/j.hydromet.2010.11.007
  22. Doughari H.J., Ndakidemi P.A., Human I.S., Benade S. // Microbes Environ. 2011. V. 26. № 2. P. 101–112. https://doi.org/10.1264/jsme2.ME10179
  23. Alain K., Pignet P., Zbinden M., Quillevere M., Duchiron F., Donval J.P., et al. // Int. J. Syst. Evol. Microbiol. 2002. V. 52. № 5. P. 1621–1628. https://doi.org/10.1099/00207713-52-5-1621
  24. Dahle H., Birkeland N.K. // Int. J. Syst. Evol. Microbiol. 2006. V. 56. № 7. P. 1539–1545. https://doi.org/10.1099/ijs.0.63894-0
  25. Yu J., Liberton M., Cliften P.F., Head R.D., Jacobs J.M., Smith R.D., et al. // Sci. Rep. 2015. V. 5. P. 8132. https://doi.org/10.1038/srep08132
  26. Liu X.J., Zhu K.L., Ye Y.Q., Han Z.T., Tan X.Y., Du Z.J., Ye M.Q. // Microb. Genom. 2024. V. 10. № 1. P. 001182. https://doi.org/10.1099/mgen.0.001182
  27. Simankova M.V., Chernych N.A., Osipov G.A., Zavarzin G.A. // Syst. Appl. Microbiol. 1993. V. 16. № 3. P. 385–389. https://doi.org/10.1016/S0723-2020(11)80270-5
  28. Hördt A., López M.G., Meier-Kolthoff J.P., Schleuning M., Weinhold L.M., Tindall B.J., et al. // Front. Microbiol. 2020. V. 11. P. 468. https://doi.org/10.3389/fmicb.2020.00468
  29. Doerfert S.N., Reichlen M., Iyer P., Wang M., Ferry J.G. // Int. J. Syst. Evol. Microbiol. 2009. V. 59. № 5. P. 1064–1069. https://doi.org/10.1099/ijs.0.003772-0
  30. Shih C.J., Lai M.C. // Can. J. Microbiol. 2010. V. 56. № 4. P. 295–307. https://doi.org/10.1139/W10-008
  31. Cheng L., Qiu T.L., Yin X.B., Wu X.L., Hu G.Q., Deng Y., Zhang H. // Int. J. Syst. Evol. Microbiol. 2007. V. 57. № 12. P. 2964–2969. https://doi.org/10.1099/ijs.0.65049-0
  32. Bryukhanov A.L., Vlasov D.Y., Maiorova M.A., Tsarovtseva I.M. // Power Technol. Eng. 2021. V. 54. № 5. P. 609–614. https://doi.org/10.1007/s10749-020-01260-5

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of key groups of microorganisms (in% of all reads of the 16S rRNA gene sequences) at the order level in the fouling of titanium plates exposed in the coastal zone of the Black (1) and White (2) seas. The groups that include corrosive microorganisms are highlighted in bold.

Download (334KB)
3. Fig. 2. Fouling of titanium plates after 10 months of exposure: a – surface of titanium before fouling; b – titanium with biofilm, Black Sea; c – titanium with biofilm, White Sea.

Download (286KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».