Modulation of Antioxidant Enzyme Activity Levels and Chaperone Levels in Different Cucurbitaceae Genotypes Under Heat Stress

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Factors determining plant resistance to abiotic stress include many stress defense systems. The most significant of them are the antioxidant and chaperone systems. However, the mechanisms of interaction between these systems have not been sufficiently studied. In this work, we studied the effect of heat stress on the activity levels of antioxidant enzymes (superoxide dismutase; SOD and catalase; CAT) and the levels of heat shock proteins (cytoplasmic HSP70 and chloroplast HSP70B) in the leaves of pumpkin seedlings of three genotypes (Cucurbita moschata,C. pepo,C. maxima) differing in their resistance to environmental stress. It was shown that under heat stress, the levels of CAT activity increased in all the studied genotypes. After heat stress, a noticeable drop (48.9%) in the level of CuZn-SOD activity was shown inC. moschata, compared with an increase in the enzyme activity by (2–14.6%) in the other two genotypes. The level of cytoplasmic HSP70 proteins decreased by 36, and chloroplast HSP70B by 34% inC. moschataplant cells after heat stress. In contrast, the level of cytoplasmic heat shock proteins HSP70 increased inC. pepoandC. maximagenotypes by 20 and 18%, respectively, and in the case of chloroplast HSP70B proteins, the increase was 43 and 10%. It was found that the modulation of the activity levels of CuZn-SOD (the main representative of the enzyme in the cell) and the levels of cytoplasmic HSP70 and chloroplast HSP70B chaperones inCucurbitaceaegenotypes is coordinated, indicating the interaction of these two cellular defense systems under heat stress. Thus, HSP70, HSP70B levels and CuZn-SOD activity levels are reliable early warning signals of heat stress, allowing the stress to be detected before it causes serious damage to the plant.

About the authors

N. P. Yurina

Bakh Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences.

Email: nyurina@inbi.ras.ru
Moscow, 119071 Russia

N. D. Murtazina

Bakh Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences.

Author for correspondence.
Email: nyurina@inbi.ras.ru
Moscow, 119071 Russia

References

  1. Mishra N.,Jiang C.,Chen L.,Paul A.,Chatterjee A.,Shen G. // Front. Plant Sci. 2023. V. 14. 1110622. https://doi.org/10.3389/fpls.2023.1110622
  2. Miller G.,Suzuki N.,Ciftci-Yilmaz S.,Mittler R. //Plant, Cell & Enviro. 2010. V. 33. P. 453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
  3. Zandalinas S.I.,Balfagón D.,Arbona V.,Gómez-Cadenas A. // Front. Plant Sci. 2017. V. 8. 953. https://doi.org/10.3389/fpls.2017.00953
  4. Katano K.,Honda K.,Suzuki N. // Int. J. Mol. Sci. 2018. V. 19. 3370. https://doi.org/10.3390/ijms19113370
  5. Arbona V.,Hossain Z.,López-Climent M.F.,Pérez-Clemente R.M.,Gómez-Cadenas A. // Physiol. Plant. 2008. V. 132. P. 452–466. https://doi.org/10.1111/j.1399-3054.2007.01029.x
  6. Wang C.,Wen D.,Sun A.,Han X.,Zhang J.,Wang Z.,Yin Y. // J. Cereal Sci. 2014. V. 60. P. 635-659. http://dx.doi.org/10.1016/j.jcs.2014.05.004
  7. Rahman M.A.,Woo J.H.,Song Y.,Lee S.H.,Hasan M.M.,Azad M.A.K.,Lee K.W. // Life. 2022. V. 12. 1426. https://doi.org/10.3390/life12091426
  8. Mishra P.,Bhoomika K.,Dubey R.S. // Protoplasma. 2013. V. 250. P. 3–19. https://doi.org/10.1007/s00709-011-0365-3
  9. Liu Z.,Qiao D.,Liu Z.,Wang Z.,Sun L.,Li X. // Peer J. 2023. V. 11. e15177. http://doi.org/10.7717/peerj.15177
  10. Hu X.,Liu R.,Li Y.,Wang W.,Tai F.,Xue R.,Li C. // Plant Growth Regul. 2010.V. 60. P. 225–235. https://doi.org/10.1007/s10725-009-9436-2
  11. Юрина Н.П. // Молекулярная биология. 2023. Т. 57. C. 949–964. https://doi.org/10.31857/S00 М26898423060228
  12. Masand S.,Yadav S.K. // Mol. Biol. Rep. 2016. V. 43. P.53–64. https://doi.org/10.1007/s11033-015-3938-y
  13. Cho E.K.,Hong C.B. // Plant Сell Reports. 2006. V. 25. P. 349–358. https://doi.org/10.1007/s00299-005-0093-2
  14. Song A.,Zhu X.,Chen F.,Gao H.,Jiang J.,Chen S. // Int. J. Mol. Sci. 2014. V. 15. P. 5063–5078. https://doi.org/10.3390/ijms15035063
  15. Augustine S.M.,Cherian A.V.,Syamaladevi D.P.,Subramonian N. // Plant Cell Physiol. 2015. V. 56. P. 2368–2380. https://doi.org/10.1093/pcp/pcv142
  16. Pulido P.,Llamas E.,Rodriguez-Concepcion M. // Plant Signaling & Behavior. 2017. V. 12. e1290039. https://doi.org/10.1080/15592324.2017.1290039
  17. Devarajan A.K.,Muthukrishanan G.,Truu J.,Truu M.,Ostonen I.,Kizhaeral S.S. et al. // Plants. 2021. V. 10. 387. https://doi.org/10.3390/plants10020387
  18. Mokhtar M.,Bouamar S.,Di Lorenzo A.,Temporini C.,Daglia M.,Riazi A. // Molecules. 2021. V. 26. 3623. https://doi.org/10.3390/molecules26123623
  19. Vinayashree S.,Vasu P. // Food Chem. 2021. V. 340. 128177. https://doi.org/10.1016/j.foodchem.2020.128177
  20. Круг Г.Овощеводство.Пер. с немецкого. М.: Колос, 2000. 572 с.
  21. Bradford M.M. // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1006/abio.1976.9999
  22. Chankova S.,Mitrovska Z.,Miteva D.,Oleskina Y.P.,Yurina N.P. // Gene. 2013. V. 516. P. 184–189. https://doi.org/10.1016/j.gene.2012.11.052
  23. Gill S.S.,Tuteja N. // Plant Physiol. Biochem. 2010. V. 48. P. 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
  24. Simova-Stoilova L.,Vaseva I.,Grigorova B.,Demirevska. K.,Feller U. // Plant Physiol. Biochem. 2010. V. 48. P. 200–206. https://doi.org/10.1016/j.plaphy.2009.11.003
  25. Sharma P.,Dubey R.S. // J. Plant Physiol. 2005. V. 162. P. 854–864. https://doi.org/10.1016/j.jplph.2004.09.011
  26. Chen S.,Liu A.,Zhang S.,Li C.,Chang R.,Liu D. // Plant Physiol. Biochem. 2013. V. 73. P. 245–253. https://doi.org/10.1016/j.plaphy.2013.10.002
  27. Driedonks N.,Xu J.,Peters J.L.,Park S.,Rieu I. // Front. Plant Sci.2015. V. 6. 999. https://doi.org/10.1134/S0006297915100053 10.3389/fpls.2015.00999
  28. Fortunato S.,Lasorella C.,Dipierro N.,Vita F.,de Pinto M.C. // Antioxidants. 2023. V. 12. 605. https://doi.org/10.3390/antiox12030605
  29. Andrási N.,Pettkó-Szandtner A.,Szabados L. // J. Exp. Botany. 2021. V. 72. P. 1558–1575. https://doi.org/10.1093/jxb/eraa576
  30. Zhang L.,Zhao H.K.,Dong Q.L.,Zhang Y.Y.,Wang Y.M.,Li H.Y. et al. // Front. Plant Sci. 2015. V. 6. 773. https://doi.org/10.3389/fpls.2015.00773
  31. Singh R.K.,Jaishankar J.,Muthamilarasan M.,Shweta S.,Dangi A.,Prasad M. // Sci. Rep. 2016. V. 6. 32641. https://doi.org/10.1038/srep32641
  32. Kim T.,Samraj S.,Jiménez J.,Gómez C.,Liu T.,Begcy K. // BMC Plant Biology. 2021. V. 21. P. 1–20. https://doi.org/10.1186/s12870-021-02959-x
  33. Liu J.,Xu L.,Shang J.,Hu X.,Yu H.,Wu H.,Lv W.,Zhao Y. // Genet. Mol. Biol. 2021. V. 44. e20210035. https://doi.org/10.1590/1678-4685-GMB-2021-0035
  34. Davoudi M.,Chen J.,Lou Q. // Int. J. Mol. Sci. 2022. V. 23. 1918. https://doi.org/10.3390/ijms23031918
  35. Aina O.,Bakare O.,Fadaka A.O.,Keyster M.,Klein A. // Planta. 2024. V. 259. 60. http://doi.org/10.1007/s00425-024-04333-1
  36. Dumanović J.,Nepovimova E.,Natić M.,Kuča K.,&Jaćević V. // Front. Рlant Sci. 2021. V. 11. 552969. https://doi.org/10.3389/fpls.2020.552969

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).