The Role of Adenylate Cyclase and сAMP in Controlling the Virulence of Animal Bacterial Pathogensrole Phytopathogens and Plant Mutuals
- Authors: Lomovatskaya L.A.1, Goncharova A.M.1
-
Affiliations:
- Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Science
- Issue: Vol 61, No 5 (2025)
- Pages: 458-467
- Section: Articles
- URL: https://journal-vniispk.ru/0555-1099/article/view/353892
- DOI: https://doi.org/10.7868/S3034574Х25050025
- ID: 353892
Cite item
Abstract
According to the information available today, all types of microorganisms have common mechanisms for regulating the activity of virulence factors by the secondary messenger cAMP. They have been best studied in human and animal pathogens. At the same time, microorganisms that differ in specialization and habitat conditions, such as phytopathogens and mutualists, have mechanisms controlled by cAMP and adenylate cyclases that are fundamentally different from those in animal pathogens. The level of study of these processes in microorganisms of different specializations is uneven. The review attempts to systematize the available literature data and conduct a comparative analysis.
About the authors
L. A. Lomovatskaya
Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Science
Email: LidaL@sifibr.irk.ru
Irkutsk, 664033 Russia
A. M. Goncharova
Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of ScienceIrkutsk, 664033 Russia
References
- Jimenez P.N., Koch G., Thompson J.A ., Xavier K.B., Cool R.H., Quaxb W.J. // Microbiol. Mol. Biol. Rev. 2012. V. 76. № 1. P. 46–65. https://doi.org/10.1128/MMBR.05007-11
- Stülke J., Krüger L. // Annu. Rev. Microbiol. 2020. V. 741. P.59–79.
- Liu C., Shi R., Jensen M.S., Zhu J., Liu J., Liu X. et al. // mLife. 2024. V. 3. P. 42–56. https://doi.org/10.1128/MMBR.05007-11
- He K., Bauer C.E. // Trends Microbiol. 2014. V. 22. P. 389–398. https://doi.org/10.1016/j.mib.2014.01.003
- Liu C., Sun D., Liu J., Chen Y., Zhou X., Ru Y., Zhu J., Liu W . // Nature Communications. 2022. V. 13. Article 1493.
- Khannpnavar B., Mehta V., Qi C., Korkhov V. // Curr. Opin. Struct. Boil. 2020. V. 63. P. 34–41. https://doi.org/10.1016/j.sbi.2020.03.003
- Büttner D., Bonas U. // Plant Biol. 2003. V. 6. P. 312–319. https://doi.org/10.1016/S1369-5266(03)00064-5
- Fulcher N.B., Holliday P.M., Klem E., Cann M.J ., Wolfgang M.C . // Mol. Microbiol. 2010. V. 76. P. 889–904.
- McDonough K.A., Rodriguez A. // Nature Rev. Microbiol. 2012. V. 10. P. 27–38. http://10.1038/nrmicro2688
- Rahme L.G., Ausubel F.M., Cao H., Drenkard E., Goumnerov B.C., Lau G.W. et al. // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 8815 –8821.
- Cao H., Baldini R.L., Rahme, L.G. // Annu. Rev. Phytopathol . 2001. V. 39. P. 259–284.
- Романенко А С., Маркова Ю. А., Климов В.Т., Чеснокова М.В., Духанина А.В., Иванова Л.К., Саляев Р .К. // Доклады АН. 2006. Т. 411. № 3. С. 424–426.
- Kereszt A., Mergaert P., Maróti G., Kondorosi E. // Microbiol. 2011. V. 14. P. 76–81. https://doi.org/10.1016/j.mib.2010.12.002
- Kambar K., Ardissone S., Kobayashi H., Saa M.M., Schumpp O., Broughton W.J., Deakin W.J. // Mol. Microbiol. 2009. V. 71. P. 92–106. https://doi.org/10.1111/j.1365-2958.2008.06507.x
- Okazaki S., Kaneko T., Sato S., Saeki K. // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 17131–17136.
- Green J., Stapleton M.R., Smith L. J., Artymiuk P.J., Kahramanoglou C., Hunt D.M. // Microbiol. 2014. V. 18. P. 1–7.
- Wolfgang M.C., Lee V.T., Gilmore M. E, Lory S. // Dev. Cell. 2003. V. 4. P. 253–263.
- Drum C.L., Yan S.Z., Bard J., Shen Y.Q., Lu, D., Soe-laiman S. et al. // Nature. 2002. V. 415. P. 396–402. https://doi.org/10.1111/j.1365-2958.2010.07135.x
- Baker D.A., Kelly J.M. // Mol. Microbiol. 2006. V. 52. P. 1229–1242. https://doi.org/10.1111/j.1365-2958.2004.04067.x
- Teixeira Nunes M., Retailleau P., Raoux-Barbot D., Comisso M., Missinou A.A., Velours C., Renault L. // PLoS Pathogens. 2023. V. 19. №. 9. Р . e1011654. https://doi.org/10.1371/journal.ppat.1011654
- Linder J., Hupfeld E., Weyand M., Steegborn C., Moni-ot S. // J. Structural Biol. 2020. V. 211. №. 2. P. 107534. https ://doi.org/10.1016/j.jsb.2020.107534
- Harkova L.G., de Dios R., Rubio Valle A., Pérez Puli- do A.J., McCarthy R.R. // PLoS Pathogens. 2024. V. 20. №. 9. P. 342–354. 012529. https://doi.org/10.1371/journal.ppat.1012529
- Regmi A., Tague J.G., Boas Lichty K.E., Boyd E.F. // Appl. Environ. Microb. 2023. V. 89. №. 1. P. e01874– е 01922. http://10.1128/aem.01874-22
- Cotta M.A ., Whitehead T.R., Wheeler M.B. // FEMS Microbiol. Lett. 1998. V. 164. P. 257 –260. https://doi.org/10.1111/j.1574-6968.1998.tb13095.x
- Téllez-Sosa J., Soberón N., Vega-Segura A., Torres- Márquez M.E., Cevallos M.A. // J. Bacteriol. 2002. V. 184. P. 3560–3568. https://doi.org/10.1128/JB.184.13.3560–3568.2002
- Casey S., Ford M., Gazdik M. // Peer J. 2014. V. 298. P. 1–13. https://doi.org/10.7717/peerj.298/fig-1
- Ampe F., Kiss E., Sabourdy F., Batut J. // Genome Biol. 2003. V. 4. P. 1–15. https://doi.org/genomebiology.com/2003/4/2/R15
- Nunes T., Retailleau P., Raoux-Barbot D., Comisso M., Missinou A.A., Velours C. et al. // PLOS Pathogens. 2023. https://doi.org/10.1371/journal.ppat.1011654
- Krol E., Werel L., Essen L. O., Becker A. // Microlife. 2023. V. 4. Р . 1–12. https://doi.org/10.1093/femsml/uqad024
- Voegele A., Sadi M., O ’ Brien D.P., Gehan P., Raoux-Barbot D., Davi M., Chenal A. // Advanced Science. 2021. V. 8. №. 9. Р . 2003630. https://doi.org/10.1002/advs .202003630
- Ломоватская Л.А., Романенко А.С., Рыкун О.В. //Микробиология. 2015. Т. 84. №. 4. С . 404–410. https://doi.org/10.7868/S0026365615040114
- Tian C.F., Garnerone A.-M., Mathieu-Demazière C., Masson-Boivin C., Batut J. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 6751–6756.
- Гончарова А.М., Ломоватская Л.А. // Прикл. биохимия и микробиол. 2023. Т . 59. № 2. С. 200 – 207. https://doi.org/ 10.31857/ S 0555109923020113
- Wang X., Liu M., Yu C., Li J., Zhou X. // Molecular Biomedicine. 2023. V. 4. № . 1. P. 49–74. https://doi.org/10.1186/s43556-023-00164-w
- Papenfort K., Bassler B. // Nat. Rev. Microbiol. 2016. V. 11. P.576–588. https://doi.org/10.1038/nrmicro.2016.89
- Wang L., Hashimoto Y., Tsao C.-Y.,Valdes J.J., Bent- ley W.E . // J. Bacteriol. 2005. V. 187. P. 2066–2076. https://doi.org/10.1128/JB.187.6.2066–2076.2005
- Ларюшина И.Э. // Животноводство и кормопроизводство. 2020. Т. 103. № 4. С. 160 – 172.
- Duddy O.P., Bassler B.L. // PLoS Pathog. 2021. V. 17. e1009074. https://doi.org/10.1371/journal.ppat.1009074
- Ro C., Cashe M., Fern ández-Coll L. // PLoS One. 2021. V. 16. e0259067. https://doi.org/10.1371/journal.pone.0259067
- Mayer C., Borges A., Flament-Simon S-C., Simõ es M. // FEMS Microbiol. Rev . 2023. V . 47. P 238 – 245.
- Ono K., Oka R., Toyofuku M., Sakaguchi A., Da M., Yoshida S., Nomura N. // Microbes Environ. 2014. V. 29. P. 104–106. https:// doi.org/10.1264/jsme2.ME13151
- Kalivoda E., Brothers K., Stella M., Schmitt M., Shanks R. // PLoS One. 2013. V. 8. P . 1 – 11.
- Ломоватская Л.А., Макарова Л.Е ., Кузакова О.В., Романенко А.С., Гончарова А.М. // Прикл. биохимия микробиология. 2016. Т . 52. № 3. С . 306-311.
- Tian Z., Xiang F., Peng K., Qin Z., Feng Y., Huang B. et al. // Animals. 2024. V. 14. P. 1–15. https://doi.org/10.3390/ ani14030437
- Taguchi F., Ichinose Y. // Mol. Plant Pathol. 2013. V. 14. P. 279–292. https://doi.org/ 10.1111/mpp.12003
- Lin C.T., Chen Y.C., Jinn T.R., Wu C.C., Hong Y.M., Wu W.H. // PloS One. 2013. P. 11–14. https://doi.org/10.1371/journal.pone.0054430
- Serate J., Roberts G.P., Berg O., Youn H. // J. Bacteriol. 2011. V. 193. P. 4859–4868. https://doi.org/10.1128/JB.00352-11
- Liu Y., Jiang G., Cui Y., Mukherjee A., Ma W.L., Chat- terjee A.K. // J. Bacteriol. 1999. V. 181. P. 2411–2421. https ://doi.org/10.1128/jb.181.8.2411-2421.1999
- Nasser W., Robert-Baudouy J., Reverchon S. // Mol. Microbiol. 1997. V. 26. P. 1071– 1082.
- Lu Y., Rashidul I.M., Hirata H., Tsuyumu S. // J. Bacteriol. 2011. V. 193. P. 6674–6682. https://doi.org/10.1128/JB.05714-11
- Thomson N.R., Nasser W., McGowan S., Sebaihia M., Salmond G.P.C. // Microbiol. 1999. V. 145. P. 1531–1545.
- Tampakaki A. // Front. Plant Sci. 2014. V. 27. P. 1–19. https://doi.org/10.3389/fpls.2014.00114
- Soto M., Sanjuan J., Olivares J. // Microbiology. 2006. V. 152. P. 3167–3174. https://doi.org/10.1099/mic.0.29112-0
- Bianchini G.M., Carricart V.C., Flawia M.M., Sanchez- Rivas Bonarek C. // World J. Microbiol. Biotechnol. 1993. V. 9. P. 168–173.
- Janczarek M., Skorupska A. // Microbiol. Lett. 2009. V. 291. P. 119–125. https://doi.org/10.1111/j.1574-6968.2008.01443.x
- Janczarek M., Urbanik-Sypniewska T. // J. Bacteriol. 2013. V. 195. P. 3412–3423. https://doi.org/10.1128/JB.02213-12
- Tian C.F., Garnerone A.M., Mathieu-Demazière C., Masson-Boivin C., Batut J. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. № 17. P. 6751–6756.
- Sharypov L.A., Yurgel S.N., Keller M., Simarov B.V., Pühler A., Becker A. // Mol. Gen. Genet. 1999. V. 261. P. 1032–1044 .
- Zhang X., Wu J., Kong Z. // Plant Commun. 2024. V. 5. 101045. https://doi.org/10.1016/j.xplc.2024.101045
- Asif M., Xie X., Zhao Z. // Phytopathology Research. 2025 . V. 7. https://doi.org/10.1186/s42483-024-00304-2
Supplementary files

