The Role of Adenylate Cyclase and сAMP in Controlling the Virulence of Animal Bacterial Pathogensrole Phytopathogens and Plant Mutuals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

According to the information available today, all types of microorganisms have common mechanisms for regulating the activity of virulence factors by the secondary messenger cAMP. They have been best studied in human and animal pathogens. At the same time, microorganisms that differ in specialization and habitat conditions, such as phytopathogens and mutualists, have mechanisms controlled by cAMP and adenylate cyclases that are fundamentally different from those in animal pathogens. The level of study of these processes in microorganisms of different specializations is uneven. The review attempts to systematize the available literature data and conduct a comparative analysis.

About the authors

L. A. Lomovatskaya

Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Science

Email: LidaL@sifibr.irk.ru
Irkutsk, 664033 Russia

A. M. Goncharova

Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Science

Irkutsk, 664033 Russia

References

  1. Jimenez P.N., Koch G., Thompson J.A ., Xavier K.B., Cool R.H., Quaxb W.J. // Microbiol. Mol. Biol. Rev. 2012. V. 76. № 1. P. 46–65. https://doi.org/10.1128/MMBR.05007-11
  2. Stülke J., Krüger L. // Annu. Rev. Microbiol. 2020. V. 741. P.59–79.
  3. Liu C., Shi R., Jensen M.S., Zhu J., Liu J., Liu X. et al. // mLife. 2024. V. 3. P. 42–56. https://doi.org/10.1128/MMBR.05007-11
  4. He K., Bauer C.E. // Trends Microbiol. 2014. V. 22. P. 389–398. https://doi.org/10.1016/j.mib.2014.01.003
  5. Liu C., Sun D., Liu J., Chen Y., Zhou X., Ru Y., Zhu J., Liu W . // Nature Communications. 2022. V. 13. Article 1493.
  6. Khannpnavar B., Mehta V., Qi C., Korkhov V. // Curr. Opin. Struct. Boil. 2020. V. 63. P. 34–41. https://doi.org/10.1016/j.sbi.2020.03.003
  7. Büttner D., Bonas U. // Plant Biol. 2003. V. 6. P. 312–319. https://doi.org/10.1016/S1369-5266(03)00064-5
  8. Fulcher N.B., Holliday P.M., Klem E., Cann M.J ., Wolfgang M.C . // Mol. Microbiol. 2010. V. 76. P. 889–904.
  9. McDonough K.A., Rodriguez A. // Nature Rev. Microbiol. 2012. V. 10. P. 27–38. http://10.1038/nrmicro2688
  10. Rahme L.G., Ausubel F.M., Cao H., Drenkard E., Goumnerov B.C., Lau G.W. et al. // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 8815 –8821.
  11. Cao H., Baldini R.L., Rahme, L.G. // Annu. Rev. Phytopathol . 2001. V. 39. P. 259–284.
  12. Романенко А С., Маркова Ю. А., Климов В.Т., Чеснокова М.В., Духанина А.В., Иванова Л.К., Саляев Р .К. // Доклады АН. 2006. Т. 411. № 3. С. 424–426.
  13. Kereszt A., Mergaert P., Maróti G., Kondorosi E. // Microbiol. 2011. V. 14. P. 76–81. https://doi.org/10.1016/j.mib.2010.12.002
  14. Kambar K., Ardissone S., Kobayashi H., Saa M.M., Schumpp O., Broughton W.J., Deakin W.J. // Mol. Microbiol. 2009. V. 71. P. 92–106. https://doi.org/10.1111/j.1365-2958.2008.06507.x
  15. Okazaki S., Kaneko T., Sato S., Saeki K. // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 17131–17136.
  16. Green J., Stapleton M.R., Smith L. J., Artymiuk P.J., Kahramanoglou C., Hunt D.M. // Microbiol. 2014. V. 18. P. 1–7.
  17. Wolfgang M.C., Lee V.T., Gilmore M. E, Lory S. // Dev. Cell. 2003. V. 4. P. 253–263.
  18. Drum C.L., Yan S.Z., Bard J., Shen Y.Q., Lu, D., Soe-laiman S. et al. // Nature. 2002. V. 415. P. 396–402. https://doi.org/10.1111/j.1365-2958.2010.07135.x
  19. Baker D.A., Kelly J.M. // Mol. Microbiol. 2006. V. 52. P. 1229–1242. https://doi.org/10.1111/j.1365-2958.2004.04067.x
  20. Teixeira Nunes M., Retailleau P., Raoux-Barbot D., Comisso M., Missinou A.A., Velours C., Renault L. // PLoS Pathogens. 2023. V. 19. №. 9. Р . e1011654. https://doi.org/10.1371/journal.ppat.1011654
  21. Linder J., Hupfeld E., Weyand M., Steegborn C., Moni-ot S. // J. Structural Biol. 2020. V. 211. №. 2. P. 107534. https ://doi.org/10.1016/j.jsb.2020.107534
  22. Harkova L.G., de Dios R., Rubio Valle A., Pérez Puli- do A.J., McCarthy R.R. // PLoS Pathogens. 2024. V. 20. №. 9. P. 342–354. 012529. https://doi.org/10.1371/journal.ppat.1012529
  23. Regmi A., Tague J.G., Boas Lichty K.E., Boyd E.F. // Appl. Environ. Microb. 2023. V. 89. №. 1. P. e01874– е 01922. http://10.1128/aem.01874-22
  24. Cotta M.A ., Whitehead T.R., Wheeler M.B. // FEMS Microbiol. Lett. 1998. V. 164. P. 257 –260. https://doi.org/10.1111/j.1574-6968.1998.tb13095.x
  25. Téllez-Sosa J., Soberón N., Vega-Segura A., Torres- Márquez M.E., Cevallos M.A. // J. Bacteriol. 2002. V. 184. P. 3560–3568. https://doi.org/10.1128/JB.184.13.3560–3568.2002
  26. Casey S., Ford M., Gazdik M. // Peer J. 2014. V. 298. P. 1–13. https://doi.org/10.7717/peerj.298/fig-1
  27. Ampe F., Kiss E., Sabourdy F., Batut J. // Genome Biol. 2003. V. 4. P. 1–15. https://doi.org/genomebiology.com/2003/4/2/R15
  28. Nunes T., Retailleau P., Raoux-Barbot D., Comisso M., Missinou A.A., Velours C. et al. // PLOS Pathogens. 2023. https://doi.org/10.1371/journal.ppat.1011654
  29. Krol E., Werel L., Essen L. O., Becker A. // Microlife. 2023. V. 4. Р . 1–12. https://doi.org/10.1093/femsml/uqad024
  30. Voegele A., Sadi M., O ’ Brien D.P., Gehan P., Raoux-Barbot D., Davi M., Chenal A. // Advanced Science. 2021. V. 8. №. 9. Р . 2003630. https://doi.org/10.1002/advs .202003630
  31. Ломоватская Л.А., Романенко А.С., Рыкун О.В. //Микробиология. 2015. Т. 84. №. 4. С . 404–410. https://doi.org/10.7868/S0026365615040114
  32. Tian C.F., Garnerone A.-M., Mathieu-Demazière C., Masson-Boivin C., Batut J. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 6751–6756.
  33. Гончарова А.М., Ломоватская Л.А. // Прикл. биохимия и микробиол. 2023. Т . 59. № 2. С. 200 – 207. https://doi.org/ 10.31857/ S 0555109923020113
  34. Wang X., Liu M., Yu C., Li J., Zhou X. // Molecular Biomedicine. 2023. V. 4. № . 1. P. 49–74. https://doi.org/10.1186/s43556-023-00164-w
  35. Papenfort K., Bassler B. // Nat. Rev. Microbiol. 2016. V. 11. P.576–588. https://doi.org/10.1038/nrmicro.2016.89
  36. Wang L., Hashimoto Y., Tsao C.-Y.,Valdes J.J., Bent- ley W.E . // J. Bacteriol. 2005. V. 187. P. 2066–2076. https://doi.org/10.1128/JB.187.6.2066–2076.2005
  37. Ларюшина И.Э. // Животноводство и кормопроизводство. 2020. Т. 103. № 4. С. 160 – 172.
  38. Duddy O.P., Bassler B.L. // PLoS Pathog. 2021. V. 17. e1009074. https://doi.org/10.1371/journal.ppat.1009074
  39. Ro C., Cashe M., Fern ández-Coll L. // PLoS One. 2021. V. 16. e0259067. https://doi.org/10.1371/journal.pone.0259067
  40. Mayer C., Borges A., Flament-Simon S-C., Simõ es M. // FEMS Microbiol. Rev . 2023. V . 47. P 238 – 245.
  41. Ono K., Oka R., Toyofuku M., Sakaguchi A., Da M., Yoshida S., Nomura N. // Microbes Environ. 2014. V. 29. P. 104–106. https:// doi.org/10.1264/jsme2.ME13151
  42. Kalivoda E., Brothers K., Stella M., Schmitt M., Shanks R. // PLoS One. 2013. V. 8. P . 1 – 11.
  43. Ломоватская Л.А., Макарова Л.Е ., Кузакова О.В., Романенко А.С., Гончарова А.М. // Прикл. биохимия микробиология. 2016. Т . 52. № 3. С . 306-311.
  44. Tian Z., Xiang F., Peng K., Qin Z., Feng Y., Huang B. et al. // Animals. 2024. V. 14. P. 1–15. https://doi.org/10.3390/ ani14030437
  45. Taguchi F., Ichinose Y. // Mol. Plant Pathol. 2013. V. 14. P. 279–292. https://doi.org/ 10.1111/mpp.12003
  46. Lin C.T., Chen Y.C., Jinn T.R., Wu C.C., Hong Y.M., Wu W.H. // PloS One. 2013. P. 11–14. https://doi.org/10.1371/journal.pone.0054430
  47. Serate J., Roberts G.P., Berg O., Youn H. // J. Bacteriol. 2011. V. 193. P. 4859–4868. https://doi.org/10.1128/JB.00352-11
  48. Liu Y., Jiang G., Cui Y., Mukherjee A., Ma W.L., Chat- terjee A.K. // J. Bacteriol. 1999. V. 181. P. 2411–2421. https ://doi.org/10.1128/jb.181.8.2411-2421.1999
  49. Nasser W., Robert-Baudouy J., Reverchon S. // Mol. Microbiol. 1997. V. 26. P. 1071– 1082.
  50. Lu Y., Rashidul I.M., Hirata H., Tsuyumu S. // J. Bacteriol. 2011. V. 193. P. 6674–6682. https://doi.org/10.1128/JB.05714-11
  51. Thomson N.R., Nasser W., McGowan S., Sebaihia M., Salmond G.P.C. // Microbiol. 1999. V. 145. P. 1531–1545.
  52. Tampakaki A. // Front. Plant Sci. 2014. V. 27. P. 1–19. https://doi.org/10.3389/fpls.2014.00114
  53. Soto M., Sanjuan J., Olivares J. // Microbiology. 2006. V. 152. P. 3167–3174. https://doi.org/10.1099/mic.0.29112-0
  54. Bianchini G.M., Carricart V.C., Flawia M.M., Sanchez- Rivas Bonarek C. // World J. Microbiol. Biotechnol. 1993. V. 9. P. 168–173.
  55. Janczarek M., Skorupska A. // Microbiol. Lett. 2009. V. 291. P. 119–125. https://doi.org/10.1111/j.1574-6968.2008.01443.x
  56. Janczarek M., Urbanik-Sypniewska T. // J. Bacteriol. 2013. V. 195. P. 3412–3423. https://doi.org/10.1128/JB.02213-12
  57. Tian C.F., Garnerone A.M., Mathieu-Demazière C., Masson-Boivin C., Batut J. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. № 17. P. 6751–6756.
  58. Sharypov L.A., Yurgel S.N., Keller M., Simarov B.V., Pühler A., Becker A. // Mol. Gen. Genet. 1999. V. 261. P. 1032–1044 .
  59. Zhang X., Wu J., Kong Z. // Plant Commun. 2024. V. 5. 101045. https://doi.org/10.1016/j.xplc.2024.101045
  60. Asif M., Xie X., Zhao Z. // Phytopathology Research. 2025 . V. 7. https://doi.org/10.1186/s42483-024-00304-2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).