Identification of the Causal Agent of Downy Mildew of Plasmopara viticola Grapes by Quantitative PCR

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new method is proposed for the early diagnosis of the causal agent of grapes downy mildew, Plasmopara viticola, based on the method of quantitative real-time PCR (qPCR RT) using SYBR Green I fluorescence. Six pairs primers were developed for the diagnosis of P. viticola, among the designed primers, PvITS1_2-real-s/a demonstrated the highest effectiveness for early detection of grapevine downy mildew with a strong positive correlation with the metagenomic data of P. viticola distribution in Far Eastern grape species and varieties, where a linear dependence was found (R2 = 0.86). Thus, qPCR RT of PvITS1_2 can be used for early detection and monitoring of asymptomatic P. viticola infections. The developed method can be used as a basis for predicting epidemics of downy mildew of grapes and for its control in vineyards.

Full Text

Restricted Access

About the authors

N. N. Nityagovsky

Federal Scientific Center of the Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Laboratory of Biotechnology

Email: aleynova@biosoil.ru
Russian Federation, Vladivostok, 690022

A. A. Dneprovskaya

Federal Scientific Center of the Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Laboratory of Biotechnology; Far Eastern Federal University, Institute of the World Ocean

Email: aleynova@biosoil.ru
Russian Federation, Vladivostok, 690022; Vladivostok, 690922

A. A. Ananev

Federal Scientific Center of the Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Laboratory of Biotechnology

Email: aleynova@biosoil.ru
Russian Federation, Vladivostok, 690022

K. V. Kiselev

Federal Scientific Center of the Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Laboratory of Biotechnology

Email: aleynova@biosoil.ru
Russian Federation, Vladivostok, 690022

О. А. Aleynova

Federal Scientific Center of the Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Laboratory of Biotechnology

Author for correspondence.
Email: aleynova@biosoil.ru
Russian Federation, Vladivostok, 690022

References

  1. Koledenkova K., Esmaeel Q., Jacquard C., Nowak J., Clément C., Ait Barka E. // Frontiers in Microbiology. 2022. V. 13. P. 889472. https://doi.org/10.3389/fmicb.2022.889472
  2. Toffolatti S.L., Russo G., Campia P., Bianco P.A., Borsa P., Coatti M., Torriani S.F., Sierotzki H. // Pest Management Science. 2018. V. 74. № 12. P. 2822–2834.
  3. Toffolatti S.L., Serrati L., Sierotzki H., Gisi U., Vercesi A. // Pest Management Science. 2007. V. 63. № 2. P. 194–201.
  4. Burruano S. // Mycologist. 2000. V. 14. № 4. P. 179–182.
  5. Díez-Navajas A.M., Greif C., Poutaraud A., Merdinoglu D. // Micron. 2007. V. 38. № 6. P. 680–683.
  6. Vercesi A., Sirtori C., Vavassori A., Setti E., Liberati D. // Med. Biol. Eng. Comput. 2000. V. 38. № 1. P. 109–112.
  7. Vercesi A., Toffolatti S.L., Zocchi G., Guglielmann R., Ironi L. // Eur J Plant Pathol. 2010. V. 128. № 1. P. 113–126.
  8. Hong C.-F., Scherm H. // Journal of Phytopathology. 2020. V. 168. № 5. P. 297–302.
  9. Negrel L., Halter D., Wiedemann-Merdinoglu S., Rustenholz C., Merdinoglu D., Hugueney P., Baltenweck R. // Frontiers in Plant Science. 2018. V. 9. P. 360. https://doi.org/10.3389/fpls.2018.00360
  10. Si Ammour M., Bove F., Toffolatti S.L., Rossi V. // Frontiers in Plant Science. 2020. V. 11. P. 1202. https://doi.org/10.3389/fpls.2020.01202
  11. Valsesia G., Gobbin D., Patocchi A., Vecchione A., Pertot I., Gessler C. // Phytopathology. 2005. V. 95. № 6. P. 672–678.
  12. Yang L., Chu B., Jie D., Yuan K., Sun Q., Jiang C., Ma Z. // Phytopathology Research. 2023. V. 5. № 1. P. 19. https://doi.org/10.1186/s42483-023-00178-w
  13. Kong X., Qin W., Huang X., Kong F., Schoen C.D., Feng J. et al. // Sci Rep. Nature Publishing Group, 2016. V. 6. № 1. P. 28935. https://doi.org/10.1038/srep28935
  14. Kiselev K.V., Nityagovsky N.N., Aleynova O.A. // Appl. Biochem. Microbiol. 2023. V. 59. № 3. P. 361–367.
  15. Nityagovsky N.N., Ananev A.A., Suprun A.R., Ogneva Z.V., Dneprovskaya A.A., Tyunin A.P. et al. // Horticulturae. 2024. V. 10. № 4. P. 326. https://doi.org/10.3390/horticulturae10040326
  16. Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. // BMC Bioinformatics. 2012. V. 13. № 1. P. 134. https://doi.org/10.1186/1471-2105-13-134
  17. Robideau G.P., De COCK A.W. a. M., Coffey M.D., Voglmayr H., Brouwer H., Bala K. et al. // Molecular Ecology Resources. 2011. V. 11. № 6. P. 1002–1011.
  18. Choi Y.-J., Beakes G., Glockling S., Kruse J., Nam B., Nigrelli L. et al. // Molecular Ecology Resources. 2015. V. 15. № 6. P. 1275–1288.
  19. Kiselev K.V., Aleynova O.A., Grigorchuk V.P., Dubrovina A.S. // Planta. 2017. V. 245. № 1. P. 151–159.
  20. R Core Team // R Foundation for Statistical Computing. 2021. https://www.r-project.org/
  21. Kassambara A. // ggpubr: “ggplot2” Based Publication Ready Plots. R package. 2023. https://rpkgs.datanovia.com/ggpubr/
  22. Lou D., Meurer M., Ovchinnikova S., Burk R., Denzler A., Herbst K. et al. // EMBO reports. 2023. V. 24. № 5. P. e57162. https://doi.org/10.15252/embr.202357162
  23. Mouafo-Tchinda R.A., Beaulieu C., Fall M.L., Carisse O. // Canadian Journal of Plant Pathology. 2021. V. 43. № 1. P. 73–87.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Quantitative determination of amplification of PvITS1_1, PvITS1_2 and PvCox1_1 sequence sites in grape DNA samples performed by PB PCR (a); relative abundance of P. viticola in NGS samples (b). The origin of all samples is indicated in Table 1. Nc is the PB PCR reaction without grape DNA. NM — it was not measured. The data is presented as an average value ± SE (combined data from samples of leaves and stems of the same plant). The average values for each digit followed by the same letter did not differ when using one-way analysis of variance (ANOVA) followed by the Tukey multiple comparison test.

Download (367KB)
3. Fig. 2. Determination of the Pearson correlation coefficient of the relationship between estimates of the relative level of amplification according to RV PCR data (rel. units) and the relative representation of P. viticola ITS1 amplicons in NGS samples: 1, 2. 3 are linear regression lines for PvITS1_1, PvITS1_2 and PvCox1_1 amplicons, respectively.

Download (246KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».