Complexity-Preserving Transposition of Summing Algorithms Using Their Computational Graph Representations
- Authors: Polevoy D.V1, Kazimirov D.D1, Chukalina M.V1, Nikolaev D.P1
-
Affiliations:
- Issue: Vol 60, No 4 (2024)
- Pages: 72-90
- Section: Image Processing
- URL: https://journal-vniispk.ru/0555-2923/article/view/280027
- DOI: https://doi.org/10.31857/S0555292324040053
- EDN: https://elibrary.ru/RGCBHA
- ID: 280027
Cite item
Abstract
About the authors
D. V Polevoy
Email: dvpsun@gmail.com
D. D Kazimirov
Email: d.kazimirov@smartengines.com
M. V Chukalina
Email: m.chukalina@smartengines.com
D. P Nikolaev
References
- Polevoy D., Gilmanov M., Kazimirov D., Chukalina M., Ingacheva A., Kulagin P., Nikolaev D. Tomographic Reconstruction: General Approach to Fast Back-Projection Algorithms // Mathematics. 2023. V. 11. № 23. Paper No. 4759 (37 pp.). https://doi.org/10.3390/math11234759
- Hough P.V.C. Machine Analysis of Bubble Chamber Pictures // Proc. 2nd Int. Conf. on High-Energy Accelerators and Instrumentation (HEACC 1959). CERN, Geneva, Switzerland. Sept. 14–19, 1959. P. 554–558.
- Illingworth J., Kittler J. A Survey of the Hough Transform // Comput. Vision Graph. Image Process. 1988. V. 44. № 1. P. 87–116. https://doi.org/10.1016/S0734-189X(88)80033-1
- Chaloeivoot T., Phiphobmongkol S. Building Detection from Terrestrial Images // J. Image Graph. 2016. V. 4. № 1. P. 46–50.
- Rahmdel P.S., Comley R., Shi D., McElduff S. A Review of Hough Transform and Line Segment Detection Approaches // Proc. 10th Int. Conf. on Computer Vision Theory and Applications (VISAPP 2015). Berlin, Germany. Mar. 11–14, 2015. V. 2. P. 411–418. https://doi.org/10.5220/0005268904110418
- Aggarwal N., Karl W. Line Detection in Images through Regularized Hough Transform // IEEE Trans. Image Process. 2006. V. 15. № 3. P. 582–591. https://doi.org/10.1109/TIP.2005.863021
- Mukhopadhyay P., Chaudhuri B.B. A Survey of Hough Transform // Pattern Recognit. 2015. V. 48. № 3. P. 993–1010. https://doi.org/10.1016/j.patcog.2014.08.027
- Алиев М.А., Николаев Д.П., Сараев А.А. Построение быстрых вычислительных схем настройки алгоритма бинаризации Ниблэка // Тр. ИСА РАН. 2014. Т. 64. № 3. С. 25–34.
- Ozturk H., Saricam I.T. Core Segmentation and Fracture Path Detection Using Shadows // J. Image Graph. 2018. V. 6. № 1. P. 69–73.
- Saha S., Basu S., Nasipuri M., Basu D. A Hough Transform Based Technique for Text Segmentation // J. Comput. 2010. V. 2. № 2. P. 134–141.
- Yazdi M., Mohammadi M. Metal Artifact Reduction in Dental Computed Tomography Images Based on Sinogram Segmentation Using Curvelet Transform Followed by Hough Transform // J. Med. Signals Sens. 2017. V. 7. № 3. P. 145–152.
- Brady M.L., Yong W. Fast Parallel Discrete Approximation Algorithms for the Radon Transform // Proc. 4th Ann. ACM Symp. on Parallel Algorithms and Architectures (SPAA’92). San Diego, California, USA. June 29 – July 1, 1992. P. 91–99. https://doi.org/10.1145/140901.140911
- Kazimirov D., Nikolaev D., Rybakova E., Terekhin A. Generalization of Brady–Yong Algorithm for Fast Hough Transform to Arbitrary Image Size, https://arxiv.org/abs/2411.07351 [cs.CV], 2024.
- Kazimirov D., Nikolaev D., Rybakova E., Terekhin A. Generalization of Brady–Yong Algorithm for Fast Hough Transform to Arbitrary Image Size // Proc. 5th Symp. on Pattern Recognition and Applications (SPRA 2024). Istanbul, Turkey. Nov. 11–13, 2024 (to appear).
- Jahan R, Suman P., Singh D.K. Lane Detection Using Canny Edge Detection and Hough Transform on Raspberry Pi // Int. J. Adv. Res. Comput. Sci. 2018. V. 9. № 2. P. 85–89.
- Thongpan N., Rattanasiriwongwut M., Ketcham M. Lane Detection Using Embedded System // Int. J. Comput. Internet Manag. 2020. V. 28. № 2. P. 46–51.
- Panfilova E., Shipitko O.S., Kunina I. Fast Hough Transform-Based Road Markings Detection For Autonomous Vehicle // 13th Int. Conf. on Machine Vision (ICMV 2020). Rome, Italy. Nov. 2–6, 2020. Proc. SPIE. V. 11605. P. 671–680. https://doi.org/10.1117/12.2587615
- Котов А.А., Коноваленко И.А., Николаев Д.П. Прослеживание объектов в видеопотоке, оптимизированное с помощью быстрого преобразования Хафа // ИтиВС. 2015. № 1. С. 56–68.
- van den Braak G.-J., Nugteren C., Mesman B., Corporaal H. Fast Hough Transform on GPUs: Exploration of Algorithm Trade-Offs // Advanced Concepts For Intelligent Vision Systems: Proc. 13th Int. Conf. ACIVS 2011. Ghent, Belgium. Aug. 22–25, 2011. Lect. Notes Comput. Sci. V. 6915. Berlin: Springer, 2011. P. 611–622. https://doi.org/10.1007/978-3-642-23687-7_55
- Brady M.L. A Fast Discrete Approximation Algorithm for the Radon Transform // SIAM J. Comput. 1998. V. 27. № 1. P. 107–119. https://doi.org/10.1137/S0097539793256673
- Prun V.E., Nikolaev D.P., Buzmakov A.V., Chukalina M.V., Asadchikov V.E. Effective Regularized Algebraic Reconstruction Technique for Computed Tomography // Crystallogr. Rep. 2013. V. 58. № 7. P. 1063–1066. https://doi.org/10.1134/S1063774513070158
- Buzug T.M. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Berlin: Springer, 2008. https://doi.org/10.1007/978-3-540-39408-2
- Withers P.J., Bouman C., Carmignato S., Cnudde V., Grimaldi D., Hagen C.K., Maire E., Manley M., Du Plessis A., Stock S.R. X-Ray Computed Tomography // Nat. Rev. Methods Primers. 2021. V. 1. № 1. Article No. 18. https://doi.org/10.1038/s43586-021-00015-4
- Arlazarov V.L., Nikolaev D.P., Arlazarov V.V., Chukalina M.V. X-Ray Tomography: The Way from Layer-by-Layer Radiography to Computed Tomography // Компьютерная оптика. 2021. Т. 45. № 6. С. 897–906. https://doi.org/10.18287/2412-6179-CO-898
- Lewitt R.M. Reconstruction Algorithms: Transform Methods // Proc. IEEE. 1983. V. 71. № 3. P. 390–408. https://doi.org/10.1109/PROC.1983.12597
- Dolmatova A., Chukalina M., Nikolaev D. Accelerated FBP for Computed Tomography Image Reconstruction // Proc. 2020 IEEE Int. Conf. on Image Processing (ICIP 2020). Abu Dhabi, United Arab Emirates. Virtual Conf. Oct. 25–28, 2020. P. 3030–3034. https: //doi.org/10.1109/ICIP40778.2020.9191044
- Mileto A., Guimaraes L.S., McCollough C.H., Fletcher J.G., Yu. L. State of the Art in Abdominal CT: The Limits of Iterative Reconstruction Algorithms // Radiology. 2019. V. 293. № 3. P. 491–503. https://doi.org/10.1148/radiol.2019191422
- Kasai R., Yamaguchi Y., Kojima T., Abou Al-Ola O.M., Yoshinaga T. Noise-Robust Image Reconstruction Based on Minimizing Extended Class of Power-Divergence Measures // Entropy. V. 23. № 8. 2021. Paper No. 1005 (16 pp.). https://doi.org/10.3390/e23081005
- Kerr J.P., Bartlett E.B. Neural Network Reconstruction of Single-Photon Emission Computed Tomography Images // J. Digit. Imaging. 1995. V. 8. № 3. P. 116–126. https://doi.org/10.1007/BF03168085
- Adler J., Oktem O. ¨ Learned Primal-Dual Reconstruction // IEEE Trans. Med. Imaging. 2018. V. 37. № 6. P. 1322–1332. https://doi.org/10.1109/TMI.2018.2799231
- Yamaev A.V., Chukalina M.V., Nikolaev D.P., Kochiev L.G., Chulichkov A.I. Neural Network Regularization in the Problem of Few View Computed Tomography // Компьютерная оптика. 2022. Т. 46. № 3. С. 422–428. https://doi.org/10.18287/2412-6179-CO-1035
- G¨ otz W.A., Druckm¨ uller H.J. A Fast Digital Radon Transform—An Efficient Means for Evaluating the Hough Transform // Pattern Recognit. 1995. V. 28. № 12. P. 1985–1992. https://doi.org/10.1016/0031-3203(95)00057-7
- Wu T.-K., Brady M.L. A Fast Approximation Algorithm for 3D Image Reconstruction // Proc. 1998 Int. Computer Symp. Workshop on Image Processing and Character Recognition. Tainan, Taiwan. Dec. 17–19, 1998. P. 213–220.
- Ершов Е.И., Терехин А.П., Николаев Д.П. Обобщение быстрого преобразования Хафа для трехмерных изображений // Информационные процессы. 2017. Т. 17. № 4. С. 294–308.
- Aliev M., Ershov E.I., Nikolaev D.P. On the Use of FHT, Its Modification for Practical Applications and the Structure of Hough Image // 11th Int. Conf. on Machine Vision (ICMV 2018). Munich, Germany. Nov. 1–3, 2018. Proc. SPIE. V. 11041. P. 1–9. https://doi.org/10.1117/12.2522803
- Bulatov K.B., Chukalina M.V., Nikolaev D.P. Fast X-Ray Sum Calculation Algorithm for Computed tomography problem // Вестник ЮурГУ ММП. 2020. Т. 13. № 1. С. 95–106. https://doi.org/10.14529/mmp200107
- Nikolaev D., Ershov E., Kroshnin A., Limonova E., Mukovozov A., Faradzhev I. On a Fast Hough/Radon Transform as a Compact Summation Scheme over Digital Straight Line Segments // Mathematics. 2023. V. 15. № 15. Papre No. 3336 (22 pp.). https://doi.org/10.3390/math11153336
- Карпенко С.М., Ершов Е.И. Исследование свойств диадического паттерна быстрого преобразования Хафа // Пробл. передачи информ. 2021. Т. 57. № 3. С. 102–111. https://doi.org/10.31857/S0555292321030074
- Ershov E., Terekhin A., Nikolaev D., Postnikov V., Karpenko S. Fast Hough Transform Analysis: Pattern Deviation from Line Segment // 8th Int. Conf. on Machine Vision (ICMV 2015). Barcelona, Spain. Nov. 19–21, 2015. Proc. SPIE. V. 9875. P. 42–46. https://doi.org/10.1117/12.2228852
- Stanier J., Watson D. Intermediate Representations in Imperative Compilers: A Survey // ACM Comput. Surv. (CSUR). 2013. V. 45. № 3. Article No. 26. P. 1–27. https://doi.org/10.1145/2480741.2480743
- Gandarillas V., Joshy A.J., Sperry M.Z., Ivanov A.K., Hwang J.T., A Graph-based Methodology for Constructing Computational Models that Automates Adjoint-based Sensitivity Analysis // Struct. Multidiscip. Optim. 2024. V. 67. № 5. P. 76. https://doi.org/10.1007/s00158-024-03792-0
- Shingde N., Blattner T., Bardakoff A., Keyrouz W., Berzins M. An Illustration of Extending Hedgehog to Multi-Node GPU Architectures Using GEMM // SN Comput. Sci. 2024. V. 5. № 5. Article No. 654. https://doi.org/10.1007/s42979-024-02917-y
- Bardakoff A. Analysis and Execution of a Data-Flow Graph Explicit Model Using Static Metaprogramming. Ph.D. Thesis. Universit´e Clermont Auvergne, Clermont-Ferrand, France, 2021. Available at https://theses.hal.science/tel-03813645v1.
- Sheshkus A., Ingacheva A., Arlazarov V., Nikolaev D. HoughNet: Neural Network Architecture for Vanishing Points Detection // Proc. 15th IAPP Int. Conf. on Document Analysis and Recognition (ICDAR 2019). Sept. 20–25, 2019. Sydney, NSW, Australia. P. 844–849. https://doi.org/10.1109/ICDAR.2019.00140
- Sheshkus A., Nikolaev D.P., Arlazarov V.L. Houghencoder: Neural Network Architecture for Document Image Semantic Segmentation // Proc. 2020 IEEE Int. Conf. on Image Processing (ICIP 2020). Abu Dhabi, United Arab Emirates. Virtual Conf. Oct. 25–28, 2020. P. 1946–1950. https://doi.org/10.1109/ICIP40778.2020.9191182
- Yamaev A., Chukalina M., Nikolaev D., Sheshkus A. Chulichkov A. Lightweight Denoising Filtering Neural Network for FBP Algorithm // 13th Int. Conf. on Machine Vision (ICMV 2020). Rome, Italy. Nov. 2–6, 2020. Proc. SPIE. V. 11605. P. 158–167. https://doi.org/10.1117/12.2587185
- Ge R., He Y., Xia C., Sun H., Zhang Y., Hu D., Chen S., Chen Y., Li S., Zhang D. DDPNet: A Novel Dual-Domain Parallel Network for Low-Dose CT Reconstruction // Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: Proc. 25th Int. Conf. Singapore. Sept. 18–22, 2022. Part VI. Lect. Notes Comput. Sci. V. 6915. Cham: Springer, 2022. P. 748–757. https://doi.org/10.1007/978-3-031-16446-0_71
- Niu C., Li M., Guo X., Wang G. Self-supervised Dual-Domain Network for Low-Dose CT Denoising // Developments in X-Ray Tomography XIV. San Diego, California, United States. Aug. 22–24, 2022. Proc. SPIE. V. 12242. P. 85–91. https://doi.org/10.1117/12.2633197
- Smolin A., Yamaev A., Ingacheva A., Shevtsova T., Polevoy D., Chukalina M., Nikolaev D., Arlazarov V. Reprojection-based Numerical Measure of Robustness for CT Reconstruction Neural Networks Algorithms // Mathematics. 2022. V. 10. № 22. Paper No. 4210 (17 pp.). https://doi.org/10.3390/math10224210
- Kojima T., Yoshinaga T. Iterative Image Reconstruction Algorithm with Parameter Estimation by Neural Network for Computed Tomography // Algorithms. 2023. V. 16. № 1. Paper No. 60 (18 pp.). https://doi.org/10.3390/a16010060
Supplementary files
