Recognition of conductive objects based on the characteristics of reflected electromagnetic wave
- Autores: Lyasota D.1, Morozov V.M.1, Magro V.I.1
- 
							Afiliações: 
							- Dnipropetrovsk National University
 
- Edição: Volume 59, Nº 7 (2016)
- Páginas: 293-300
- Seção: Article
- URL: https://journal-vniispk.ru/0735-2727/article/view/176856
- DOI: https://doi.org/10.3103/S0735272716070025
- ID: 176856
Citar
Resumo
The problem of electromagnetic wave diffraction by the metal objects has been solved using integral equation technique. The diagrams of backward scattering have been plotted for four different objects. Based on the feature vector, which has been constructed by applying wavelet packet signal decomposition, a neural network has been trained. We have performed the testing of ability of the neural network to recognize the object depending on the noise level. Various methods of the feature vector forming have been considered.
Sobre autores
D. Lyasota
Dnipropetrovsk National University
														Email: morozovvmd@yandex.ru
				                					                																			                												                	Ucrânia, 							Dnipropetrovsk						
V. Morozov
Dnipropetrovsk National University
							Autor responsável pela correspondência
							Email: morozovvmd@yandex.ru
				                					                																			                												                	Ucrânia, 							Dnipropetrovsk						
V. Magro
Dnipropetrovsk National University
														Email: morozovvmd@yandex.ru
				                					                																			                												                	Ucrânia, 							Dnipropetrovsk						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					