Criterion for Minimum of Mean Information Deviation for Distinguishing Random Signals with Similar Characteristics
- 作者: Savchenko V.V.1
- 
							隶属关系: 
							- Nizhny Novgorod State Linguistic University
 
- 期: 卷 61, 编号 9 (2018)
- 页面: 419-430
- 栏目: Article
- URL: https://journal-vniispk.ru/0735-2727/article/view/177245
- DOI: https://doi.org/10.3103/S0735272718090042
- ID: 177245
如何引用文章
详细
The problem of distinguishing random signals with similar spectral and correlational characteristics is considered. To solve this problem, a criterion for a minimum of the mean divergence of the hypotheses taken with respect to the true distribution in the Kullback–Liebler information metric is proposed. Using this criterion, an optimal algorithm is synthesized, which allows achieving a guaranteed efficiency gain in discriminating random signals of similar structure. An example of its implementation in the problem of automatic speech recognition at the basic, phonetic level of signal processing is considered. Estimates of its effectiveness are obtained. Theoretical estimates of the effectiveness are confirmed by the results of the experiment. The author’s special-purpose information system was used for this. On the basis of the obtained results, recommendations are given for the practical application of the proposed criterion in problems of statistical signal processing, where a problem of verifying close statistical hypotheses arises.
作者简介
Vladimir Savchenko
Nizhny Novgorod State Linguistic University
							编辑信件的主要联系方式.
							Email: vvsavchenko@yandex.ru
				                					                																			                												                	俄罗斯联邦, 							Nizhny Novgorod						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					