Joint channel estimation and data detection in MIMO-OFDM using distributed compressive sensing
- Авторы: Jomon K.C.1, Prasanth S.2
- 
							Учреждения: 
							- IES College of Engineering
- Royal College of Engineering and Technology
 
- Выпуск: Том 60, № 2 (2017)
- Страницы: 80-87
- Раздел: Article
- URL: https://journal-vniispk.ru/0735-2727/article/view/177031
- DOI: https://doi.org/10.3103/S0735272717020029
- ID: 177031
Цитировать
Аннотация
Channel impulse response of a multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) channel contains a smaller number of nonzero components. In addition, locations of nonzero taps coincide in delay domain. So channel impulse responses can be modeled into an approximately group sparse signals. In this work we use extended sparse Bayesian learning (ESBL), a new method for multichannel compressive sensing for channel estimation in MIMO-OFDM. In joint extended sparse Bayesian learning (JESBL), both pilot and data subcarriers are utilized for channel estimation. These methods can reduce the number of pilot subcarriers in OFDM and improve the spectral efficiency of the MIMO-OFDM system.
Об авторах
K. Jomon
IES College of Engineering
							Автор, ответственный за переписку.
							Email: jomonkcharly@gmail.com
				                					                																			                												                	Индия, 							Kerala						
S. Prasanth
Royal College of Engineering and Technology
														Email: jomonkcharly@gmail.com
				                					                																			                												                	Индия, 							Akkikavu						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					