Joint channel estimation and data detection in MIMO-OFDM using distributed compressive sensing
- Autores: Jomon K.C.1, Prasanth S.2
- 
							Afiliações: 
							- IES College of Engineering
- Royal College of Engineering and Technology
 
- Edição: Volume 60, Nº 2 (2017)
- Páginas: 80-87
- Seção: Article
- URL: https://journal-vniispk.ru/0735-2727/article/view/177031
- DOI: https://doi.org/10.3103/S0735272717020029
- ID: 177031
Citar
Resumo
Channel impulse response of a multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) channel contains a smaller number of nonzero components. In addition, locations of nonzero taps coincide in delay domain. So channel impulse responses can be modeled into an approximately group sparse signals. In this work we use extended sparse Bayesian learning (ESBL), a new method for multichannel compressive sensing for channel estimation in MIMO-OFDM. In joint extended sparse Bayesian learning (JESBL), both pilot and data subcarriers are utilized for channel estimation. These methods can reduce the number of pilot subcarriers in OFDM and improve the spectral efficiency of the MIMO-OFDM system.
Sobre autores
K. Jomon
IES College of Engineering
							Autor responsável pela correspondência
							Email: jomonkcharly@gmail.com
				                					                																			                												                	Índia, 							Kerala						
S. Prasanth
Royal College of Engineering and Technology
														Email: jomonkcharly@gmail.com
				                					                																			                												                	Índia, 							Akkikavu						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					