The impact of proton pump inhibitors on the development of dementia in the elderly population

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Dementia is characterized by progressive decline in cognitive functions and loss of motor skills and the ability to perform self-care tasks. The global increase in the number of dementia patients each year is attributed to longer life expectancy and aging populations. Currently, there is no standardized approach to dementia treatment; thus, primary prevention aimed at mitigating risk factors is a key focus of healthcare systems.

Some pharmacological agents have potential effects on patients’ cognitive functions, which should be considered during prescribing them.

Proton pump inhibitors (PPIs) are commonly prescribed for elderly patients prone to gastrointestinal diseases. The polymorbidity of this patient group warrants PPI prescription as gastroprotective therapy alongside other medications affecting gastric secretion (i.e., nonsteroidal anti-inflammatory drugs, anticoagulants, glucocorticoids).

There are several undesirable interactions between PPIs and other drugs: reduced absorption of antifungal agents and certain cardiac glycosides, alteration of metabolism, mutual enhancement or reduction of the pharmacological effects of PPIs and another prescribed drug against the background of the first, and increased mortality among patients taking PPIs and clopidogrel due to the possible reduction of its antiplatelet effect.

This study aimed to analyze and systematize data on the relationship between the use of PPIs and the development of dementia. The potential influence of PPIs on the cognitive functions of elderly and senile people were considered.

Analysis of the literature data showed that the risks of developing dementia vary across different patient cohorts depending on age, comorbidities, duration of medication use, vitamin B12 levels, presence of apolipoprotein E alleles ε4, beta-amyloid concentration, and the ability of PPIs to inhibit the cholinergic enzyme. In prescribing PPIs to elderly patients, it is crucial to consider all risk factors and individual patient characteristics and conduct a thorough assessment of the risk/benefit ratio of the therapy.

About the authors

Oksana M. Bolshakova

I.P. Pavlov First Saint Petersburg State Medical University

Author for correspondence.
Email: oxanabolshakowa2015@yandex.ru
ORCID iD: 0009-0008-6899-4052
Russian Federation, Saint Petersburg

Angelina A. Krivonos

I.P. Pavlov First Saint Petersburg State Medical Universi

Email: ang.krivonos@gmail.com
ORCID iD: 0009-0004-7435-1695
Russian Federation, Saint Petersburg

Anastasia B. Rogozina

I.P. Pavlov First Saint Petersburg State Medical University

Email: anas.rogozina2015@yandex.ru
ORCID iD: 0009-0006-3101-9304
Russian Federation, Saint Petersburg

Veronika S. Lindover

Saint Petersburg State Pediatric Medical University

Email: nika.lindover@yandex.ru
ORCID iD: 0009-0009-0687-1302
SPIN-code: 2721-2690
Russian Federation, Saint Petersburg

Maria V. Englas

Military Medical Academy named after S.M. Kirov

Email: maria.englas@yandex.ru
ORCID iD: 0009-0001-9720-0257
Russian Federation, Saint Petersburg

Kirill P. Rayevsky

Military Medical Academy named after S.M. Kirov

Email: sicarius001@gmail.com
ORCID iD: 0000-0002-9939-3443
SPIN-code: 9133-3802
Russian Federation, Saint Petersburg

References

  1. Lyalukova EA, Tereshchenko YuV, Chernysheva EH, Lyalyukov AV. Choosing a proton pump inhibitor from the standpoint of effectiveness and safety in a particular patient. Lechaschi vrach. 2020;(8):6–10. (In Russ.) EDN: UARNKC doi: 10.26295/OS.2020.10.41.004
  2. Kim Y, Seo SI, Lee KJ, et al. Long-term use of proton-pump inhibitor on Alzheimer’s disease: a real-world distributed network analysis of six observational Korean databases using a Common Data Model. Ther Adv Neurol Disord. 2022;15:17562864221135700. doi: 10.1177/17562864221135700
  3. Caetano C, Veloso M, Borda S. Proton pump inhibitors and dementia: what association? Dement Neuropsychol. 2023;17:e20220048. doi: 10.1590/1980-5764-DN-2022-0048
  4. Khomeriki NM, Khomeriki SG. Is an optimization of the use of proton pump inhibitors feasible in the real world medical practice? Almanac of Clinical Medicine. 2022;50(6):357–366. EDN: GOCSDI doi: 10.18786/2072-0505-2022-50-051
  5. Zhang HJ, Zhang XH, Liu J, et al. Effects of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of proton pump inhibitors. Pharmacol Res. 2020;152:104606. doi: 10.1016/j.phrs.2019.104606
  6. Ostroumova OD, Pereverzev AP. Influence of proton pump inhibitors on cognitive function and dementia risk. Consilium Medicum. 2019;21(2):31–36. EDN: HEHZWS doi: 10.26442/20751753.2019.2.180171
  7. Makunts T, Abagyan R. How can proton pump inhibitors damage central and peripheral nervous systems? Neural Regen Res. 2020;15(11):2041–2042. doi: 10.4103/1673-5374.282252
  8. Bakirtzis C, Lima M, De Lorenzo SS, et al. Secondary central nervous system demyelinating disorders in the elderly: a narrative review. Healthcare (Basel). 2023;11(15):2126. doi: 10.3390/healthcare11152126
  9. El-Mezayen NS, Abd El Moneim RA, El-Rewini SH. Vitamin B12 as a cholinergic system modulator and blood brain barrier integrity restorer in Alzheimer’s disease. Eur J Pharm Sci. 2022;174:106201. doi: 10.1016/j.ejps.2022.106201
  10. Lauer AA, Grimm HS, Apel B, et al. Mechanistic link between vitamin B12 and Alzheimer’s disease. Biomolecules. 2022;12(1):129. doi: 10.3390/biom12010129
  11. Schleicher E, Didangelos T, Kotzakioulafi E, et al. Clinical pathobiochemistry of vitamin b12 deficiency: improving our understanding by exploring novel mechanisms with a focus on diabetic neuropathy. Nutrients. 2023;15(11):2597. doi: 10.3390/nu15112597
  12. Northuis CA, Bell EJ, Lutsey PL, et al. Cumulative use of proton pump inhibitors and risk of dementia: the atherosclerosis risk in communities study. Neurology. 2023;101(18):e1771–e1778. doi: 10.1212/WNL.0000000000207747 Corrected and republished from: Neurology. 2024;103(1):e209596. doi: 10.1212/WNL.0000000000209596
  13. Porter KM, Hoey L, Hughes CF, et al. Associations of atrophic gastritis and proton-pump inhibitor drug use with vitamin B-12 status, and the impact of fortified foods, in older adults. Am J Clin Nutr. 2021;114(4):1286–1294. doi: 10.1093/ajcn/nqab193
  14. Pourhadi N, Janbek J, Jensen-Dahm C, et al. Proton pump inhibitors and dementia: a nationwide population-based study. Alzheimers Dement. 2024;20(2):837–845. doi: 10.1002/alz.13477
  15. Montecinos-Oliva C, Arrázola MS, Jara C, et al. Hormetic-like effects of l-homocysteine on synaptic structure, function, and aβ aggregation. Pharmaceuticals (Basel). 2020;13(2):24. doi: 10.3390/ph13020024
  16. Tan B, Venketasubramanian N, Vrooman H, et al. Homocysteine and cerebral atrophy: the epidemiology of dementia in singapore study. J Alzheimers Dis. 2018;62(2):877–885. doi: 10.3233/JAD-170796
  17. Nelson ME, Andel R, Nedelska Z, et al. The association between homocysteine and memory in older adults. J Alzheimers Dis. 2021;81(1):413–426. doi: 10.3233/JAD-201558
  18. Xiao Y, Xu W, Niu D, et al. Investigation into the impact of proton pump inhibitors on sertraline transport across the blood-brain barrier. Eur J Pharm Sci. 2024;194:106653. doi: 10.1016/j.ejps.2023.106653
  19. Zecca C, Pasculli G, Tortelli R, et al. The role of age on beta-amyloid1-42 plasma levels in healthy subjects. Front Aging Neurosci. 2021;13:698571. doi: 10.3389/fnagi.2021.698571
  20. Hu J, Wang X. Alzheimer’s disease: from pathogenesis to mesenchymal stem cell therapy — bridging the missing link. Front Cell Neurosci. 2022;15:811852. doi: 10.3389/fncel.2021.811852
  21. Tsyganova TV, Melisheva AN. Alzheimer’s disease: modern views on the pathogenesis of the disease // Kronos. 2022;7(11):39–41. EDN: NFZLFI doi: 10.52013/2658-7556-73-11-11
  22. Nichols RA, Gulisano W, Puzzo D. Editorial: beta amyloid: from physiology to pathogenesis. Front Mol Neurosci. 2022;15:876224. doi: 10.3389/fnmol.2022.876224
  23. Ahn N, Wawro N, Baumeister SE, et al. Time-varying use of proton pump inhibitors and cognitive impairment and dementia: a real-world analysis from Germany. Drugs Aging. 2023;40(7):653–663. doi: 10.1007/s40266-023-01031-7
  24. Badiola N, Alcalde V, Pujol A, et al. The proton-pump inhibitor lansoprazole enhances amyloid beta production. PLoS One. 2013;8(3):e58837. doi: 10.1371/journal.pone.0058837
  25. Iliyasu MO, Musa SA, Oladele SB, Iliya AI. Amyloid-beta aggregation implicates multiple pathways in Alzheimer’s disease: understanding the mechanisms. Front Neurosci. 2023;17:1081938. doi: 10.3389/fnins.2023.1081938
  26. Choi HG, Kim JH, Kim JH, et al. Associations between proton pump inhibitors and Alzheimer’s disease: a nested case-control study using a Korean nationwide health screening cohort. Alzheimers Res Ther. 2022;14(1):91. doi: 10.1186/s13195-022-01032-5
  27. Moayyedi P, Eikelboom JW, Bosch J, et al. Safety of proton pump inhibitors based on a large, multi-year, randomized trial of patients receiving Rivaroxaban or Aspirin. Gastroenterology. 2019;157(3):682–691.e2. doi: 10.1053/j.gastro.2019.05.056
  28. Cooksey R, Kennedy J, Dennis MS, et al. Proton pump inhibitors and dementia risk: Evidence from a cohort study using linked routinely collected national health data in Wales, UK. PLoS One. 2020;15(9):e0237676. doi: 10.1371/journal.pone.0237676
  29. Khan Z, Mehan S, Saifi MA, et al. Proton pump inhibitors and cognitive health: review on unraveling the dementia connection and co-morbid risks. Curr Alzheimer Res. 2024;20(11):739–757. doi: 10.2174/0115672050289946240223050737
  30. Chen LY, Lin HJ, Wu WT, et al. Clinical use of acid suppressants and risk of dementia in the elderly: a pharmaco-epidemiological cohort study. Int J Environ Res Public Health. 2020;17(21):8271. doi: 10.3390/ijerph17218271
  31. Montagne A, Nikolakopoulou AM, Huuskonen MT, et al. APOE4 accelerates advanced-stage vascular and neurodegenerative disorder in old Alzheimer’s mice via cyclophilin A independently of amyloid-β. Nat Aging. 2021;1(6):506–520. doi: 10.1038/s43587-021-00073-z Corrected and republished from: Nat Aging. 2021;1(7):624. doi: 10.1038/s43587-021-00090-y
  32. Raulin AC, Doss SV, Trottier ZA, et al. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener. 2022;17(1):72. doi: 10.1186/s13024-022-00574-4
  33. Tcw J, Qian L, Pipalia NH, et al. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell. 2022;185(13):2213–2233.e25. doi: 10.1016/j.cell.2022.05.017
  34. Guo T, Zhang D, Zeng Y, et al. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener. 2020;15(1):40. doi: 10.1186/s13024-020-00391-7
  35. Koutsodendris N, Nelson MR, Rao A, Huang Y. Apolipoprotein E and Alzheimer’s disease: findings, hypotheses, and potential mechanisms. Annu Rev Pathol. 2022;17:73–99. doi: 10.1146/annurev-pathmechdis-030421-112756
  36. Zhang P, Li Z, Chen P, et al. Regular proton pump inhibitor use and incident dementia: population-based cohort study. BMC Med. 2022;20(1):271. doi: 10.1186/s12916-022-02478-y
  37. Andrade C. Anticholinergic drug exposure and the risk of dementia: there is modest evidence for an association but not for causality. J Clin Psychiatry. 2019;80(4):19f13000. doi: 10.4088/JCP.19f13000
  38. A Armstrong R. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019;57(2):87–105. doi: 10.5114/fn.2019.85929
  39. Akpan A, Blaquiere BD, Nellaya I, et al. Polypharmacy and potentially inappropriate medications (PIMs) in older adults referred to a memory clinic. BJPsych Open. 2021;7(S1):s306–s306. doi: 10.1192/bjo.2021.810
  40. Kumar R, Kumar A, Nordberg A, et al. Proton pump inhibitors act with unprecedented potencies as inhibitors of the acetylcholine biosynthesizing enzyme-A plausible missing link for their association with incidence of dementia. Alzheimers Dement. 2020;16(7):1031–1042. doi: 10.1002/alz.12113

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».