The role of matrix metalloproteinase 9 as a biological marker in heart failure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Heart failure (HF) is an important medical, social and economic problem. The study of new biological markers deepens our understanding of the pathogenesis of this disease. In modern cardiology, there is a growing interest in matrix metalloproteinases (MMPs). These enzymes play an important role in tissue remodeling, angiogenesis, as well as in cell proliferation, migration and differentiation.

The purpose of this literature review is to analyze current experimental and clinical data on MMP-9 as a new diagnostic and prognostic marker in HF. This review presents an analysis of modern publications on a given topic. We conducted an analysis of literature sources covering all important materials as of 01.12.2024. Experimental studies have established that MMP-9 is a key participant in cardiac remodeling, since it is directly involved in the degradation of extracellular matrix proteins and the activation of profibrotic pathways, as well as cytokines and chemokines. Clinical trial data indicate the significant importance of MMP-9 for diagnosis and prognosis in patients with HF.

About the authors

Amina M. Alieva

Pirogov Russian National Research Medical University

Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Moscow

Alik M. Rahaev

Kabardino-Balkarian State University

Email: alikrahaev@yandex.ru
ORCID iD: 0000-0001-9601-1174
SPIN-code: 5166-8100

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Nalchik

Albina B. Sultangalieva

Pirogov Russian National Research Medical University

Email: albina_sult_2002@mail.ru
ORCID iD: 0009-0008-4194-8486
SPIN-code: 6613-2479
Russian Federation, Moscow

Irina E. Baykova

Pirogov Russian National Research Medical University

Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290
SPIN-code: 3054-8884

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Moscow

Aila M. Karakizova

Peoples' Friendship University of Russia

Email: aila.karakizova@yandex.ru
ORCID iD: 0009-0001-3481-012X
Russian Federation, Moscow

Gayane G. Totolyan

Pirogov Russian National Research Medical University

Email: tgg03@mail.ru
ORCID iD: 0000-0002-9922-5845
SPIN-code: 1441-7740

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Moscow

Jannet A. Elmurzaeva

Kabardino-Balkarian State University

Email: jannet.elmurzaeva@yandex.ru
ORCID iD: 0000-0002-5640-6638
SPIN-code: 7284-3749

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Nalchik

Mahty I. Akkiev

Kabardino-Balkarian State University

Email: mahakki@yandex.ru
ORCID iD: 0009-0007-4382-4383
Russian Federation, Nalchik

Linda A. Khachukaeva

Pirogov Russian National Research Medical University

Email: khachukaeva99@icloud.com
ORCID iD: 0009-0007-3306-4835
Russian Federation, Moscow

Alim O. Asanov

Kabardino-Balkarian State University

Email: asal2000@mail.ru
ORCID iD: 0009-0000-2507-4530
SPIN-code: 1551-1342

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Nalchik

Azret A. Musukaev

Pirogov Russian National Research Medical University

Email: azret.musukaev@mail.ru
ORCID iD: 0009-0003-7010-4470
Russian Federation, Moscow

Igor G. Nikitin

Pirogov Russian National Research Medical University

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN-code: 3595-1990

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

References

  1. Larina VN, Zamyatin KA, Sheregova EN, Kudinova MA. Adherence to treatment as an integral component of the management of patients with heart failure. Russian Journal of Cardiology. 2024;29(1):5690. doi: 10.15829/1560-4071-2024-5690 EDN: KRULNV
  2. Boytsov SA. Chronic heart failure: evolution of etiology, prevalence and mortality over the past 20 years. Terapevticheskii Arkhiv. 2022;94(1):5–8. doi: 10.26442/00403660.2022.01 EDN: HRWCBS
  3. Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 - a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53–59. doi: 10.26442/20751753.2022.1.201382 EDN: MTPNUO
  4. Alieva AM, Reznik EV, Pinchuk TV, et al. Growth differentiation factor-15 (GDF-15) is a biological marker in heart failure. The Russian Archives of Internal Medicine. 2023;13(1):14–23. doi: 10.20514/2226-6704-2023-13-1-14-23 EDN: DHDDPP
  5. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: microRNAs and heart failure. Therapy. 2022; 1:60–70. doi: 10.18565/therapy.2022.1.60-70 EDN: FKQBDC
  6. Larina VN, Lunev VI. The value of biomarkers in the diagnosis and prognosis of heart failure in older age. The Russian Archives of Internal Medicine. 2021;11(2):98–110. doi: 10.20514/2226-6704-2021-11-2-98-110 EDN: RRKISN
  7. Pecherina TB, Barbarash OL. Clinical and prognostic significance of matrix metalloproteinases in patients with myocardial infarction. Fundamental and Clinical Medicine. 2019;4(2):84–94. doi: 10.23946/2500-0764-2019-4-2-84-94 EDN: TOYVUV
  8. Wysocka A, Szczygielski J, Kopańska M, et al. Matrix metalloproteinases in cardioembolic stroke: from background to complications. Int J Mol Sci. 2023;24(4):3628. doi: 10.3390/ijms24043628 EDN: FMWXML
  9. Trentini A, Manfrinato MC, Castellazzi M, Bellini T. Sex-related differences of matrix metalloproteinases (MMPs): new perspectives for these biomarkers in cardiovascular and neurological diseases. J Pers Med. 2022;12(8):1196. doi: 10.3390/jpm12081196 EDN: YEGIXU
  10. Rodrigues KE, Pontes MHB, Cantão MBS, Prado AF. The role of matrix metalloproteinase-9 in cardiac remodeling and dysfunction and as a possible blood biomarker in heart failure. Pharmacol Res. 2024;206:107285. doi: 10.1016/j.phrs.2024.107285 EDN: JNUTRQ
  11. Rashid ZA, Bardaweel SK. Novel matrix metalloproteinase-9 (MMP-9) inhibitors in cancer treatment. Int J Mol Sci. 2023;24(15):12133. doi: 10.3390/ijms241512133 EDN: FYYQDL
  12. Augoff K, Hryniewicz-Jankowska A, Tabola R, Stach K. MMP9: a tough target for targeted therapy for cancer. Cancers (Basel). 2022;14(7):1847. doi: 10.3390/cancers14071847 EDN: ZJZLSD
  13. Li T, Li X, Feng Y, et al. The role of matrix metalloproteinase-9 in atherosclerotic plaque instability. Mediators Inflamm. 2020;2020:3872367. doi: 10.1155/2020/3872367 EDN: OIZGEP
  14. Mashaqi S, Mansour HM, Alameddin H, et al. Matrix metalloproteinase-9 as a messenger in the cross talk between obstructive sleep apnea and comorbid systemic hypertension, cardiac remodeling, and ischemic stroke: a literature review. J Clin Sleep Med. 2021;17(3):567–591. doi: 10.5664/jcsm EDN: CAMPOC
  15. Iyer RP, Jung M, Lindsey ML. MMP-9 signaling in the left ventricle following myocardial infarction. Am J Physiol Heart Circ Physiol. 2016;311(1):H190-H198. doi: 10.1152/ajpheart.00243.2016 EDN: WTEMPH
  16. Becirovic-Agic M, Chalise U, Daseke MJ 2nd, et al. Infarct in the heart: what's MMP-9 got to do with it? Biomolecules. 2021;11(4):491. doi: 10.3390/biom11040491 EDN: WBHNMO
  17. Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol. 2013;48(3):222–272. doi: 10.3109/10409238.2013.770819
  18. Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities. Biochem J. 2016;473(11):1471–1482. doi: 10.1042/BJ20151154 EDN: WUZBNX
  19. O'Sullivan S, Medina C, Ledwidge M, et al. Nitric oxide-matrix metaloproteinase-9 interactions: biological and pharmacological significance — NO and MMP-9 interactions. Biochim Biophys Acta. 2014;1843(3):603–617. doi: 10.1016/j.bbamcr.2013.12.006
  20. Serifova X, Ugarte-Berzal E, Opdenakker G, Vandooren J. Homotrimeric MMP-9 is an active hitchhiker on alpha-2-macroglobulin partially escaping protease inhibition and internalization through LRP-1. Cell Mol Life Sci. 2020;77(15):3013–3026. doi: 10.1007/s00018-019-03338-4 EDN: ANOLIG
  21. Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J. 2021;288(24):7162–7182. doi: 10.1111/febs.15701 EDN: XTYKLE
  22. Coates-Park S, Lazaroff C, Gurung S, et al. Tissue inhibitors of metalloproteinases are proteolytic targets of matrix metalloproteinase 9. Matrix Biol. 2023;123:59–70. doi: 10.1016/j.matbio.2023.09.002 EDN: KUTRZH
  23. Zhang J. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Rev Cardiovasc Med. 2022;23(2):73. doi: 10.31083/j.rcm2302073 EDN: UCDOZK
  24. Hibbs MS, Hoidal JR, Kang AH. Expression of a metalloproteinase that degrades native type V collagen and denatured collagens by cultured human alveolar macrophages. J Clin Invest. 1987;80(6):1644–1650. doi: 10.1172/JCI113253
  25. Vaisar T, Kassim SY, Gomez IG, et al. MMP-9 sheds the beta2 integrin subunit (CD18) from macrophages. Mol Cell Proteomics. 2009;8(5):1044–1060. doi: 10.1074/mcp.M800449-MCP200
  26. Liu Z, Zhou X, Shapiro SD, et al. The serpin alpha1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell. 2000;102(5):647–655. doi: 10.1016/s0092-8674(00)00087-8 EDN: XPXENV
  27. Koenig W, Sager HB. Inflammation and cardiovascular disease: new epidemiologic data and their potential implications for anti-cytokine therapy. Eur J Prev Cardiol. 2023;30(16):1728–1730. doi: 10.1093/eurjpc/zwad251 EDN: IKNZEZ
  28. Henein MY, Vancheri S, Longo G, Vancheri F. The role of inflammation in cardiovascular disease. Int J Mol Sci. 2022;23(21):12906. doi: 10.3390/ijms232112906 EDN: POQJBU
  29. Toba H, Cannon PL, Yabluchanskiy A, et al. Transgenic overexpression of macrophage matrix metalloproteinase-9 exacerbates age-related cardiac hypertrophy, vessel rarefaction, inflammation, and fibrosis. Am J Physiol Heart Circ Physiol. 2017;312(3):H375-H383. doi: 10.1152/ajpheart.00633.2016
  30. Kawamura N, Kubota T, Kawano S, et al. Blockade of NF-kappaB improves cardiac function and survival without affecting inflammation in TNF-alpha-induced cardiomyopathy. Cardiovasc Res. 2005;66(3):520–529. doi: 10.1016/j.cardiores.2005.02.007 EDN: INBGHT
  31. Zhu E, Yuan C, Hu S, et al. Injection of matrix metalloproteinase-9 leads to ventricular remodeling. Dis Markers. 2022;2022:1659771. doi: 10.1155/2022/1659771 EDN: XYTUWA
  32. Ducharme A, Frantz S, Aikawa M, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000;106(1):55–62. doi: 10.1172/JCI8768
  33. Nandi SS, Katsurada K, Sharma NM, et al. MMP9 inhibition increases autophagic flux in chronic heart failure. Am J Physiol Heart Circ Physiol. 2020;319(6):H1414–H1437. doi: 10.1152/ajpheart.00032.2020 EDN: MSTJRV
  34. Scrimgeour NR, Wrobel A, Pinho MJ, Høydal MA. microRNA-451a prevents activation of matrix metalloproteinases 2 and 9 in human cardiomyocytes during pathological stress stimulation. Am J Physiol Cell Physiol. 2020;318(1):C94–C102. doi: 10.1152/ajpcell.00204.2019 EDN: RZNDJO
  35. Xing Y, Xie S, Shi W, et al. Targeting interleukin-21 inhibits stress overload-induced cardiac remodelling via the TIMP4/MMP9 signalling pathway. Eur J Pharmacol. 2023;940:175482. doi: 10.1016/j.ejphar.2022.175482 EDN: MJBSTT
  36. Goerg J, Sommerfeld M, Greiner B, et al. Low-dose empagliflozin improves systolic heart function after myocardial infarction in rats: regulation of MMP9, NHE1, and SERCA2a. Int J Mol Sci. 2021;22(11):5437. doi: 10.3390/ijms22115437 EDN: UFRSGD
  37. Suryono S, Rohman MS, Widjajanto E, et al. Colchicine as potential inhibitor targeting MMP-9, NOX2 and TGF-β1 in myocardial infarction: a combination of docking and molecular dynamic simulation study. J Biomol Struct Dyn. 2023;41(21):12214–12224. doi: 10.1080/07391102.2023.2166590 EDN: EWNOXF
  38. Cohen L, Sagi I, Bigelman E, et al. Cardiac remodeling secondary to chronic volume overload is attenuated by a novel MMP9/2 blocking antibody. PLoS One. 2020;15(4):e0231202. doi: 10.1371/journal.pone.0231202 Erratum in: PLoS One. 2020;15(10):e0241419. doi: 10.1371/journal.pone.0241419 EDN: SRRFTG
  39. Zhao K, Li Y, Zhou Z, et al. Ginkgolide A alleviates cardiac remodeling in mice with myocardial infarction via binding to matrix metalloproteinase-9 to attenuate inflammation. Eur J Pharmacol. 2022;923:174932. doi: 10.1016/j.ejphar.2022.174932 EDN: MTAWBI
  40. Liu S, Jiang H, Chang C, et al. Effects and mechanism of noninvasive positive-pressure ventilation in a rat model of heart failure due to myocardial infarction. Med Sci Monit. 2021;27:e928476. doi: 10.12659/MSM.928476 EDN: TOTPXA
  41. Olejarz W, Łacheta D, Kubiak-Tomaszewska G. Matrix metalloproteinases as biomarkers of atherosclerotic plaque instability. Int J Mol Sci. 2020;21(11):3946. doi: 10.3390/ijms21113946 EDN: LQWOTG
  42. Wang Y, Jiao L, Qiang C, et al. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother. 2024;171:116116. doi: 10.1016/j.biopha.2023.116116 EDN: GPIRBY
  43. Gregersen I, Scarth ME, Abdullah R, et al. Elevated interleukin 8 and matrix metalloproteinase 9 levels are associated with myocardial pathology in users of anabolic-androgenic steroids. Eur J Prev Cardiol. 2024;31(12):1469–1476. doi: 10.1093/eurjpc/zwae126 EDN: OBODPB
  44. Sundström J, Evans JC, Benjamin EJ, et al. Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures: the Framingham Heart Study. Circulation. 2004;109(23):2850–2856. doi: 10.1161/01.CIR.0000129318.79570.84
  45. Wilson EM, Gunasinghe HR, Coker ML, et al. Plasma matrix metalloproteinase and inhibitor profiles in patients with heart failure. J Card Fail. 2002;8(6):390–398. doi: 10.1054/jcaf.2002.129659
  46. Zile MR, Desantis SM, Baicu CF, et al. Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circ Heart Fail. 2011;4(3):246–256. doi: 10.1161/CIRCHEARTFAILURE.110.958199
  47. Pan W, Yang D, Yu P, Yu H. Comparison of predictive value of NT-proBNP, sST2 and MMPs in heart failure patients with different ejection fractions. BMC Cardiovasc Disord. 2020;20(1):208. doi: 10.1186/s12872-020-01493-2 EDN: KPDYAY
  48. Somuncu MU, Pusuroglu H, Karakurt H, et al. The prognostic value of elevated matrix metalloproteinase-9 in patients undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction: A two-year prospective study. Rev Port Cardiol (Engl Ed). 2020;39(5):267–276. doi: 10.1016/j.repc.2019.09.011 EDN: VDUKSB
  49. Jordakieva G, Budge-Wolfram RM, Budinsky AC, et al. Plasma MMP-9 and TIMP-1 levels on ICU admission are associated with 30-day survival. Wien Klin Wochenschr. 2021;133(3-4):86–95. doi: 10.1007/s00508-019-01592-x EDN: CWHSBF
  50. Elhewala AA, Sanad M, Soliman AM, et al. Matrix metalloproteinase-9 in pediatric rheumatic heart disease with and without heart failure. Biomed Rep. 2021;14(1):4. doi: 10.3892/br.2020.1380
  51. Andreev DA, Balakin EI, Samoilov AS, Pustovoit VI. The role of doxorubicin in the formation of cardiotoxicity — generally accepted statement. Part I. Prevalence and mechanisms of formation (review). Drug development & registration. 2024;13(1):190–199. doi: 10.33380/2305-2066-2024-13-1-1508 EDN: WPQBWA
  52. Avagimyan A, Pogosova N, Kakturskiy L, et al. Doxorubicin-related cardiotoxicity: review of fundamental pathways of cardiovascular system injury. Cardiovasc Pathol. 2024;73:107683. doi: 10.1016/j.carpath.2024.107683 EDN: ZEZZXU
  53. Vitale R, Marzocco S, Popolo A. Role of oxidative stress and inflammation in doxorubicin-induced cardiotoxicity: a brief account. Int J Mol Sci. 2024;25(13):7477. doi: 10.3390/ijms25137477 EDN: PYKJYG
  54. Todorova VK, Azhar G, Stone A, et al. Neutrophil biomarkers can predict cardiotoxicity of anthracyclines in breast cancer. Int J Mol Sci. 2024;25(17):9735. doi: 10.3390/ijms25179735 EDN: VYRBLG
  55. Teplyakov AT, Shilov SN, Grakova EV, et al. Prognostic value of matrix metalloproteinases in patients with anthracycline-induced heart failure. Complex Issues of Cardiovascular Diseases. 2022;11(3):72–83. doi: 278-2022-11-3-72-83 EDN: GQXTMM
  56. Basia D, Gupta MD, Kunal S, et al. Matrix metalloproteinases and their gene polymorphism in young ST-segment elevation myocardial infarction. Indian Heart J. 2022;74(6):519–523. doi: 10.1016/j.ihj.2022.11.001 EDN: NEIHJI
  57. Osipova OA, Shepel RN, Agarkov NM, et al. Factors associated with deterioration of myocardial inotropic function in patients with coronary artery disease. Cardiovascular Therapy and Prevention. 2024;23(8):4081. doi: 10.15829/1728-8800-2024-4081 EDN: HHJBEI

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The role of MMP-9 in cardiac remodeling. MMP-9 — matrix metalloproteinase 9; IL — interleukin; TNF-α — tumor necrosis factor alpha; TGF-β — transforming growth factor beta; NF-κB — nuclear factor kappa-bi; CD36 — belongs to class B of scavenger receptors. Adopted from [10] with permission of copyright holder. © K.E. Rodrigues et al., 2025.

Download (583KB)

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».