Drug-associated nephrotic syndrome in a child with Wilson's disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Wilson's disease (WD) (synonyms: Wilson–Konovalov disease, hepatolenticular degeneration, hepatocerebral dystrophy) is a rare, severe, hereditary multisystem disorder that manifests itself primarily in liver, neurological, and psychiatric disorders due to excessive copper deposition in organs and tissues. The long latent course and polymorphism of clinical symptoms make diagnostics difficult. WD manifests itself in childhood, adolescence, and later in life. WD diagnostics is based on a combination of clinical symptoms, laboratory test data (determination of ceruloplasmin levels in the blood, copper excretion in the urine), and molecular genetic testing.

Complex treatment of WD primarily involves adherence to a copper-eliminating diet. A mandatory condition for the effectiveness of treatment of patients with WD is lifelong chelation therapy. The drug of choice in all age groups is penicillamine (a penicillin derivative), which has a significant number of side effects. Adverse reactions against the background of penicillamine therapy develop in about 30% of cases. These include changes in the nervous system (loss of taste, pyridoxine-deficiency polyneuritis), respiratory system (interstitial pneumonitis, diffuse fibrosing alveolitis, Goodpasture's syndrome), digestive system (decreased appetite, nausea, vomiting, diarrhea, aphthous stomatitis, glossitis, intrahepatic cholestasis, pancreatitis), kidneys (nephritis, nephrotic syndrome, hematuria).

CLINICAL CASE DESCRIPTION: The case history of a 6-year-old girl with WD is analyzed. The peculiarity of the clinical case presented by us is the latent course of the disease, which was suspected when cytolysis syndrome was detected in connection with an examination for episodic abdominal pain. Further examination showed a decrease in the concentration of ceruloplasmin, initially borderline values of copper excretion in urine, and questionable values in the penicillamine test. Molecular genetic testing was important for establishing the diagnosis, and confirming the diagnosis. Prescribed chelation therapy with penicillamine led to the normalization of cytolysis syndrome parameters, but caused serious adverse events in the form of nephrotic syndrome, which required replacing penicillamine with trientine and prescribing glucocorticoids. Against the background of treatment correction, stable clinical and laboratory remission of nephrotic syndrome was achieved with satisfactory renal and liver function parameters and no manifestations of cytolysis.

CONCLUSION: A moderate increase in biochemical markers of cytolysis, cholestasis, and bilirubin concentration, refractory to standard treatment, requires in-depth examination, including molecular genetics, to exclude WD. If side effects of penicillamine derivatives are detected, immediate correction of pathogenetic therapy with replacement of the chelating drug is necessary.

About the authors

Svetlana S. Paunova

Pirogov Russian National Research Medical University; Morozov Children's Municipal Clinical Hospital

Author for correspondence.
Email: ss.paunova@mail.ru
ORCID iD: 0000-0001-8046-2341
SPIN-code: 2865-1325

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow; Moscow

Natalia V. Labutina

Morozov Children's Municipal Clinical Hospital

Email: natalay.l@yandex.ru
ORCID iD: 0009-0005-6887-1720
SPIN-code: 5601-1075

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Maria N. Zubavina

Morozov Children's Municipal Clinical Hospital

Email: nefrolog@mail.ru
ORCID iD: 0009-0007-2870-0905
SPIN-code: 5624-7286
Russian Federation, Moscow

Madina M. Shibilova

Morozov Children's Municipal Clinical Hospital

Email: mado7777@inbox.ru
ORCID iD: 0009-0008-7281-5205
Russian Federation, Moscow

Tamara A. Skvortsova

Morozov Children's Municipal Clinical Hospital

Email: 79151289538@yandex.ru
ORCID iD: 0000-0002-6525-8665
SPIN-code: 6178-3323

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Tatyana V. Strokova

Pirogov Russian National Research Medical University; Federal Research Center of Nutrition, Biotechnology and Food Safety

Email: strokova_t.v@mail.ru
ORCID iD: 0000-0002-0762-0873
SPIN-code: 4467-8048

MD, Dr. Sci. (Medicine), Professor of the Russian Academy of Sciences

Russian Federation, Moscow; Moscow

Madlena E. Bagaeva

Pirogov Russian National Research Medical University; Federal Research Center of Nutrition, Biotechnology and Food Safety

Email: med3794@yandex.ru
ORCID iD: 0000-0002-1752-6901
SPIN-code: 7566-6985

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow; Moscow

Artyom V. Nikitin

Morozov Children's Municipal Clinical Hospital

Email: artem_i_am@mail.ru
ORCID iD: 0000-0001-8837-9243
SPIN-code: 8098-7447

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Claudia K. Do Egito

Morozov Children's Municipal Clinical Hospital

Email: claudiaavgustina@mail.ru
ORCID iD: 0000-0003-4109-6603
Russian Federation, Moscow

Asia I. Safina

Russian Medical Academy of Continuous Professional Education

Email: safina_asia@mail.ru
ORCID iD: 0000-0002-3261-1143
SPIN-code: 5470-3077

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Maria A. Daminova

Russian Medical Academy of Continuous Professional Education

Email: daminova-maria@yandex.ru
ORCID iD: 0000-0001-6445-0893
SPIN-code: 6668-9918

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Moscow

Marina V. Khoreva

Pirogov Russian National Research Medical University

Email: mv@rsmu.ru
ORCID iD: 0000-0002-6224-2510
SPIN-code: 2092-5036

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Maria A. Rusova

Pirogov Russian National Research Medical University

Email: rusova.maria@yandex.ru
ORCID iD: 0009-0004-7584-5267
Russian Federation, Moscow

Natalia А. Semenova

Research Centre for Medical Genetics

Email: semenova@med-gen.ru
ORCID iD: 0000-0001-7041-045X
SPIN-code: 7697-7472

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

References

  1. https://www.orpha.net/ [Internet]. Wilson disease [cited: 10.09.2024]. Available from: https://www.orpha.net/en/disease/detail/905?name=Wilson&mode=name
  2. Clinical guidelines "Copper metabolism disorders (Wilson's disease)" [Interenet]. [cited: 08.09.2024]. Available from: https://cr.minzdrav.gov.ru/recomend/376_2 (In Russ.)
  3. Krasilnikova EYu, Sokolov AA. Аnalysis of situation in the sphere of health care and drug supply of patients, suffering from rare diseases in the period 2013–2015. Problemy standartizatsii v zdravookhranenii. 2016;(3-4):42–51. EDN: VVWKLT
  4. Guindi M. Wilson disease. Semin Diagn Pathol. 2019;36(6):415–422. doi: 10.1053/j.semdp.2019.07.008
  5. Strokova OA, Gerasimenko IV, Zvereva SI, et al. Wilson–Konovalov disease: epidemiology, diagnostics, treatment. Dnevnik kazanskoy meditsinskoy shkoly. 2021;(3):15–20. EDN: NBVUCB
  6. Mejias SG, Ramphul K. Penicillamine. Treasure Island (FL): StatPearls Publishing; 2024 [Internet]. [cited: 15.09.2024]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513316/
  7. Wang Y, Fang J, Li B, et al. Clinical and genetic characterization of pediatric patients with Wilson's disease from Yunnan province where ethnic minorities gather. Front Genet. 2023;14:1142968. doi: 10.3389/fgene.2023.1142968
  8. Nayagam JS, Jeyaraj R, Foskett P, et al. ATP7B genotype and chronic liver disease treatment outcomes in Wilson disease: worse survival with loss-of-function variants. Clin Gastroenterol Hepatol. 2023;21(5):1323–1329.e4. doi: 10.1016/j.cgh.2022.08.041
  9. Ryzhkova OP, Kardymon OL, Prohorchuk EB, et al. Guidelines for the interpretation of massive parallel sequencing variants (update 2018, v2). Medical genetics. 2019;18(2):3–24. doi: 10.25557/2073-7998.2019.02.3-24 EDN: JZLJUE
  10. Green RC, Berg JS, Grody WW, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2017;19(5):606. doi: 10.1038/gim.2017.18 Erratum in: Genet Med. 2013;15(7):565–574. doi: 10.1038/gim.2013.73
  11. Fellers FX, Shahidi NT. The nephrotic syndrome induced by penicillamine therapy. Am J Dis Child. 1959;98:669.
  12. Siafakas CG, Jonas MM, Alexander S, et al. Early onset of nephrotic syndrome after treatment with D-penicillamine in a patient with Wilson's disease. Am J Gastroenterol. 1998;93(12):2544–2546. doi: 10.1111/j.1572-0241.1998.00715.x
  13. Kang S, Cho MH, Hyun H, et al. A pediatric case of a D-penicillamine induced ANCA-associated vasculitis manifesting a pulmonary-renal syndrome. J Korean Med Sci. 2019;34(24):e173. doi: 10.3346/jkms.2019.34.e173
  14. Davison AM, Day AT, Golding JR, Thomson D. Effect of penicillamine on the kidney. Proc R Soc Med. 1977;70 (Suppl. 3):109–113.
  15. Athanasopoulou D, Lionaki S, Skalioti C, et al. Drug-induced podocytopathies: report of four cases and review of the literature. Life (Basel). 2023;13(6):1264. doi: 10.3390/life13061264
  16. Dang J, Chevalier K, Letavernier E, et al. Kidney involvement in Wilson's disease: a review of the literature. Clin Kidney J. 2024;17(4):sfae058. doi: 10.1093/ckj/sfae058
  17. Lee EJ, Woo MH, Moon JS, Ko JS. Efficacy and safety of D-penicillamine, trientine, and zinc in pediatric Wilson disease patients. Orphanet J Rare Dis. 2024;19(1):261. doi: 10.1186/s13023-024-03271-1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 3. Radiography (a) and computed tomography (b) of the lungs of a 13-year-old female patient with Wilson's disease and anti-neutrophil cytoplasmic antibody-associated vasculitis: a — radiographic bilateral extensive focal consolidation; b — multifocal patchy ground-glass opacity corresponding to diffuse pulmonary hemorrhage [13]. © The Korean Academy of Medical Sciences, 2019.

Download (144KB)
3. Fig. 4. Light microscopy of a renal biopsy specimen from a 13-year-old female patient with Wilson's disease and antineutrophil cytoplasmic antibody-associated vasculitis. The arrow shows fibrocellular crescents in 39% of glomeruli in the biopsy specimen (PAS — periodic acid, Schiff): a — ×40; b — ×400, representative crescent (arrow) [13]. © The Korean Academy of Medical Sciences, 2019.

Download (239KB)
4. Fig. 1. Dynamics of laboratory parameters of a child with Wilson's disease and nephrotic syndrome during prednisolone therapy (by days of hospital stay). © Eco-Vector, 2025.

Download (84KB)
5. Fig. 2. Dynamics of transaminase activity during therapy with copper chelators and prednisolone. © Eco-Vector, 2025.

Download (128KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).