Нарушение сна. От бессонницы к депрессии. От животных к человеку
- Авторы: Янковский В.С.1, Борозденко Д.А.1, Негребецкий В.В.1
-
Учреждения:
- Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
- Выпуск: Том 31, № 3 (2025)
- Страницы: 263-270
- Раздел: Обзоры
- URL: https://journal-vniispk.ru/0869-2106/article/view/313401
- DOI: https://doi.org/10.17816/medjrf637141
- EDN: https://elibrary.ru/RLSTIF
- ID: 313401
Цитировать
Аннотация
В обзоре представлены данные о физиологии сна, патофизиологических основах его нарушений и об эпидемиологии данного заболевания. Рассмотрены основные гипотезы формирования депрессивных расстройств: моноаминовая, воспалительная, нейроэндокринная. Приведены актуальные данные клинических исследований и результаты метаанализов, установлены ключевые факторы влияния депривации сна на соматические и психические функции человека. По данным мониторинга сна с использованием электроэнцефалографии показана общая патофизиологическая связь нарушения быстрой фазы сна у пациентов с депрессивными расстройствами и нарушениями сна. Обсуждается роль депривации сна как одного из экспериментальных и неоднозначных методов терапии депрессивных расстройств.
Представлены и классифицированы основные доклинические модели патологии на лабораторных животных: тотальной и парадоксальной депривации сна. Проанализированы примеры поведенческих паттернов животных в различных поведенческих установках (водный лабиринт Морриса, Y-образный лабиринт). Показаны изменения экспрессии генов на фоне моделирования заболевания и изменения нейрометаболитов после использования различных методик депривации сна. Обсуждены перспективы дальнейших доклинических исследований в области патологии сна, выявлены ещё не изученные области (в частности, терапевтическое влияние депривации сна на различные модели депрессии).
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Владислав Сергеевич Янковский
Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Email: vld.s.yan567@gmail.com
ORCID iD: 0009-0002-3337-9048
SPIN-код: 1883-6337
Россия, Москва
Денис Андреевич Борозденко
Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Автор, ответственный за переписку.
Email: borozdenko@phystech.edu
ORCID iD: 0000-0002-6797-9722
SPIN-код: 7351-6661
MD
Россия, МоскваВадим Витальевич Негребецкий
Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Email: nmr_rsmu@yahoo.com
ORCID iD: 0000-0001-6852-8942
SPIN-код: 3658-3258
д-р хим. наук
Россия, МоскваСписок литературы
- Patel AK, Reddy V, Shumway KR, Araujo JF. Physiology, sleep stages. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526132/
- Payne JD, Schacter DL, Propper RE, et al. The role of sleep in false memory formation. Neurobiol Learn Mem. 2009;92(3):327–334. doi: 10.1016/j.nlm.2009.03.007
- Rosenwasser AM, Turek FW. Neurobiology of circadian rhythm regulation. Sleep Med Clin. 2015;10(4):403–412. doi: 10.1016/j.jsmc.2015.08.003
- Kerkhof GA. Epidemiology of sleep and sleep disorders in The Netherlands. Sleep Med. 2017;30:229–239. doi: 10.1016/j.sleep.2016.09.015
- Brunner DP, Dijk DJ, Borbély AA. Repeated partial sleep deprivation progressively changes in EEG during sleep and wakefulness. Sleep. 1993;16(2):100–113. doi: 10.1093/sleep/16.2.100
- Perotta B, Arantes-Costa FM, Enns SC, et al. Sleepiness, sleep deprivation, quality of life, mental symptoms and perception of academic environment in medical students. BMC Med Educ. 2021;21(1):111. doi: 10.1186/s12909-021-02544-8 EDN: MZPZXO
- Seoane HA, Moschetto L, Orliacq F, et al. Sleep disruption in medicine students and its relationship with impaired academic performance: A systematic review and meta-analysis. Sleep Med Rev. 2020;53:101333. doi: 10.1016/j.smrv.2020.101333 EDN: GIHDJX
- Tomaso CC, Johnson AB, Nelson TD. The effect of sleep deprivation and restriction on mood, emotion, and emotion regulation: three meta-analyses in one. Sleep. 2021;44(6):zsaa289. doi: 10.1093/sleep/zsaa289 EDN: IHZIGD
- Köhler CA, Freitas TH, Maes M, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135(5):373–387. doi: 10.1111/acps.12698
- Kim YK, Won E. The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder. Behav Brain Res. 2017;329:6–11. doi: 10.1016/j.bbr.2017.04.020
- Mulinari S. Monoamine theories of depression: historical impact on biomedical research. J Hist Neurosci. 2012;21(4):366–392. doi: 10.1080/0964704X.2011.623917
- Spencer RL, Deak T. A users guide to HPA axis research. Physiol Behav. 2017;178:43–65. doi: 10.1016/j.physbeh.2016.11.014
- Zajkowska Z, Gullett N, Walsh A, et al. Cortisol and development of depression in adolescence and young adulthood — a systematic review and meta-analysis. Psychoneuroendocrinology. 2022;136:105625. doi: 10.1016/j.psyneuen.2021.105625 EDN: NRVQQV
- Li X, Wu T, Yu Z, et al. Apocynum venetum leaf extract reverses depressive-like behaviors in chronically stressed rats by inhibiting oxidative stress and apoptosis. Biomed Pharmacother. 2018;100:394–406. doi: 10.1016/j.biopha.2018.01.137
- Kv A, Madhana RM, Js IC, et al. Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behav Brain Res. 2018;344:73–84. doi: 10.1016/j.bbr.2018.02.009
- Roberts RE, Duong HT. The prospective association between sleep deprivation and depression among adolescents. Sleep. 2014;37(2):239–244. doi: 10.5665/sleep.3388
- Dong L, Xie Y, Zou X. Association between sleep duration and depression in US adults: A cross-sectional study. J Affect Disord. 2022;296:183–188. doi: 10.1016/j.jad.2021.09.075 EDN: GKCGSZ
- Crișan CA, Milhem Z, Stretea R, et al. A narrative review on REM sleep deprivation: a promising non-pharmaceutical alternative for treating endogenous depression. J Pers Med. 2023;13(2):306. doi: 10.3390/jpm13020306 EDN: PZUDFJ
- Landsness EC, Goldstein MR, Peterson MJ, et al. Antidepressant effects of selective slow wave sleep deprivation in major depression: a high-density EEG investigation. J Psychiatr Res. 2011;45(8):1019–1026. doi: 10.1016/j.jpsychires.2011.02.003
- Hu B, Liu C, Mou T, et al. Meta-analysis of sleep deprivation effects on patients with depression. Front Psychiatry. 2021;12:783091. doi: 10.3389/fpsyt.2021.783091 EDN: KYWCNT
- Chai Y, Gehrman P, Yu M, et al. Enhanced amygdala-cingulate connectivity associates with better mood in both healthy and depressive individuals after sleep deprivation. Proc Natl Acad Sci U S A. 2023;120(26):e2214505120. doi: 10.1073/pnas.2214505120
- Goldschmied JR, Boland E, Palermo E, et al. Antidepressant effects of acute sleep deprivation are reduced in highly controlled environments. J Affect Disord. 2023;340:412–419. doi: 10.1016/j.jad.2023.07.116 EDN: ZOYSPV
- Berro LF, Santos R, Hollais AW, et al. Acute total sleep deprivation potentiates cocaine-induced hyperlocomotion in mice. Neurosci Lett. 2014;579:130–133. doi: 10.1016/j.neulet.2014.07.028
- Fenzl T, Romanowski CP, Flachskamm C, et al. Fully automated sleep deprivation in mice as a tool in sleep research. J Neurosci Methods. 2007;166(2):229–235. Erratum in: J Neurosci Methods. 2008;170(1):179. doi: 10.1016/j.jneumeth.2007.07.007
- Lopez-Rodriguez F, Kim J, Poland RE. Total sleep deprivation decreases immobility in the forced-swim test. Neuropsychopharmacology. 2004;29(6):1105–1111. doi: 10.1038/sj.npp.1300406
- Lemons A, Saré RM, Beebe Smith C. Chronic sleep deprivation in mouse pups by means of gentle handling. J Vis Exp. 2018;(140):58150. doi: 10.3791/58150
- Youngblood BD, Zhou J, Smagin GN, et al. Sleep deprivation by the «flower pot» technique and spatial reference memory. Physiol Behav. 1997;61(2):249–256. doi: 10.1016/s0031-9384(96)00363-0
- Han C, Li F, Ma J, et al. Distinct behavioral and brain changes after different durations of the modified multiple platform method on rats: An animal model of central fatigue. PLoS One. 2017;12(5):e0176850. doi: 10.1371/journal.pone.0176850
- Chanana P, Kumar A. GABA-BZD receptor modulating mechanism of panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior: possible roles of oxidative stress, mitochondrial dysfunction and neuroinflammation. Front Neurosci. 2016;10:84. doi: 10.3389/fnins.2016.00084
- Kumar A, Singh A. Possible involvement of GABAergic mechanism in protective effect of melatonin against sleep deprivation-induced behaviour modification and oxidative damage in mice. Fundam Clin Pharmacol. 2009;23(4):439–448. doi: 10.1111/j.1472-8206.2009.00737.x
- Chen D, Zhang Y, Wang C, et al. Modulation of hippocampal dopamine and synapse-related proteins by electroacupuncture improves memory deficit caused by sleep deprivation. Acupunct Med. 2020;38(5):343–351. doi: 10.1177/0964528420902147 EDN: KOSRRW
- da Silva Rocha-Lopes J, Machado RB, Suchecki D. Chronic REM sleep restriction in juvenile male rats induces anxiety-like behavior and alters monoamine systems in the amygdala and hippocampus. Mol Neurobiol. 2018;55(4):2884–2896. doi: 10.1007/s12035-017-0541-3 EDN: YEIASD
- Jansen PR, Watanabe K, Stringer S, et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat Genet. 2019;51(3):394–403. doi: 10.1038/s41588-018-0333-3 EDN: KRPIJM
- Wang Z, Chen L, Zhang L, Wang X. Paradoxical sleep deprivation modulates depressive-like behaviors by regulating the MAOA levels in the amygdala and hippocampus. Brain Res. 2017;1664:17–24. doi: 10.1016/j.brainres.2017.03.022
- Rico-Rosillo MG, Vega-Robledo GB. Sleep and immune system. Rev Alerg Mex. 2018;65(2):160–170. doi: 10.29262/ram.v65i2.359
- Gonzalez-Castañeda RE, Galvez-Contreras AY, Martínez-Quezada CJ, et al. Sex-related effects of sleep deprivation on depressive- and anxiety-like behaviors in mice. Exp Anim. 2016;65(1):97–107. doi: 10.1538/expanim.15-0054 EDN: WUEMCT
Дополнительные файлы
