Применение кавитации на лазерном нагревательном элементе в хирургии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В статье рассматривается явление лазерной кавитации, инициированной на кончике погружённого в жидкость оптоволокна под действием непрерывного лазерного излучения. Исследуются свойства затопленных кумулятивных струй, возникающих при схлопывании кавитационных пузырьков. Показано, что в свободном пространстве струи переносят тепло через жидкость, а в случае кавитации внутри заполненной жидкостью трубки приводят к инверсионному движению жидкости. Практическое использование установленных эффектов в медицине позволяет более успешно проводить хирургическое лечение сосудистых заболеваний, кист, острых и хронических инфицированных ран.

Об авторах

М. А. Гузев

Институт прикладной математики ДВО РАН

Автор, ответственный за переписку.
Email: guzev@iam.dvo.ru
Владивосток, Россия

В. М. Чудновский

Тихоокеанский океанологический институт им. В.И. Ильичёва ДВО РАН

Email: vm53@mail.ru
Владивосток, Россия

И. А. Абушкин

Южно-Уральский государственный медицинский университет Минздрава России

Email: ivanabushkin@mail.ru
Челябинск, Россия

Список литературы

  1. Sinibaldi G., Occhicone A., Alves Pereira F. et al. Laser induced cavitation: Plasma generation and breakdown shockwave // Phys. Fluids. 2019, vol. 31 (10), 103302.
  2. Koch M., Rosselló J.M., Lechner C. et al. Dynamics of a Laser-Induced Bubble above the Flat Top of a Solid Cylinder – Mushroom-Shaped Bubbles and the Fast Jet // Fluids. 2022, vol. 7 (1), 2.
  3. Ohl C.D., Arora M., Dijkink R. et al. Surface cleaning from laser-induced cavitation bubbles // Applied physics letters. 2006, vol. 89, 074102.
  4. Dular M., Požar T., Zevnik J., Petkovšek R. High speed observation of damage created by a collapse of a single cavitation bubble // Wear. 2019, vol. 418–419, pp. 13–23.
  5. Hu J., Dirie N.I., Yang J. et al. Percutaneous Ureteroscopy Laser Unroofing – A Minimally Invasive Approach for Renal Cyst Treatment // Sci. Rep. 2017, vol. 7, 14445.
  6. Dowlatshahi K., Francescatti D.S., Bloom K.J. Laser Therapy for Small Breast Cancers // Am. J. Surg. 2002, vol. 184, pp. 359–363.
  7. Tontini G.E., Neumann H., Pastorelli L. et al. Thulium Laser in Interventional Endoscopy: Animal and Human Studies // Endoscopy. 2017, vol. 49, pp. 365–370.
  8. Беликов А.В. Оптотермические волоконные конвертеры для лазерной медицины. СПб: Университет ИТМО, 2020. Belikov A.V. Optothermal fiber converters for laser medicine. St. Petersburg: ITMO University, 2020. (In Russ.)
  9. Yusupov V.I., Chudnovskii V.M., Bagratashvili V.N. Laser-induced hydrodynamics in water and biotissues nearby optical fiber tip // INTECH Open Access Publisher. 2011, pp. 95−118. doi: 10.13140/2.1.4838.9122.
  10. Yusupov V.I., Chudnovskii V.M., Bagratashvili V.N. Laser-induced hydrodynamics in water-saturated biotissues. 1. Generation of bubbles in liquid // Laser Physics. 2010, vol. 20, no. 7, pp. 1641–1646.
  11. Kulik A.V., Mokrin S.N., Kraevskii A.M. et al. Features of dynamics of a jet flow generated on a laser heater by surface boiling of liquid // Technical Physics Letters. 2022, vol. 48, no. 1, pp. 60–63.
  12. Mokrin S.N., Tereshko D.A., Kulik A.V. et al. Selective Laser Heating of Closed Cavity Shells Filled with Liquid // Doklady Physics. 2022, vol. 67, no. 12, pp. 491–494.
  13. Mokrin S.N., Tereshko D.A., Kulik A.V. et al. Physical mechanisms of laser thermotherapy of cysts // Heat Transfer Research. 2023, vol. 54 (4), pp. 11–24.
  14. Чудновский В.М., Гузев М.А., Дац Е.П., Кулик А.В. Эффект ускоренного всасывания жидкости в трубке при лазерной кавитации на лазерном нагревательном элементе // Доклады РАН. Физика, технические науки. 2023. Т. 513. С. 41–47. Chudnovskii V.M., Guzev M.A., Dats E.P., Kulik A.V. The effect of accelerated absorption of liquid in a tube during laser cavitation on a laser heating element // Reports of the Russian Academy of Sciences. Physics, Technical Sciences. 2023, vol. 513, pp. 41–47. (In Russ.)
  15. Гузев М.А., Василевский Ю.В., Дац Е.П. и др. Лазерная кавитация в трубке, погружённой в ограниченный объём, заполненный жидкостью // Доклады РАН. Физика, технические науки. 2024. Т. 519. С. 19–25. Guzev M.A., Vassilevski Yu.V., Dats E.P. et al. Laser cavitation in a tube immersed in a confined volume filled with liquid // Reports of the Russian Academy of Sciences. Physics, Technical Sciences. 2023, vol. 519, pp. 19–25. (In Russ.)
  16. Abushkin I.A., Privalov V.A., Lappa A.V., Minaev V.P. Fiber 1.56–1.9 μm lasers in treatment of vascular malformations in children and adults Progress in Biomedical Optics and Imaging // Proceedings of SPIE. 2013, vol. 8565, 85650V.
  17. Meire M., De Moor R.J.G. Principle and antimicrobial efficacy of laser-activated irrigation: A narrative review // International Endodontic Journal. 2024, no. 7 (57), pp. 841–860.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Примечание

В печатной версии статья выходила под DOI: 10.31857/S0869587325080016


© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).