Generalized Р—Т path and fluid regime of exhumation of metapelites of the central zone of the Limpopo complex, south Africa

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The P–T paths of exhumation of Precambrian granulite complexes at the craton boundaries usually include two stages: sub-isothermal decompression and a decompression–cooling stage with a more gentle P–T path. Our goal is to understand the possible causes of the change in the slope of the P–T path of exhumation of the Central Zone (CZ) of the Limpopo granulite complex (South Africa), located between the Kaapvaal and Zimbabwe cratons. For this purpose, rocks (mainly, metapelites) from various structural positions within the Central Zone, i.e. dome structures, regional crossfolds, local and regional shear-zones, were studied. Metapelites are gneisses of similar bulk composition. Relics of leucosomes composed of quartz-feldspar aggregates with garnet and biotite are variously manifested in rocks, and melanocratic areas enriched in cordierite usually mark micro-shear-zones that envelope and/or break garnet porphyroblasts. Study of polymineral (crystallized melt and fluid) inclusions in garnet, its zoning with respect to the major (Mg, Fe, Ca) and some trace (P, Cr, Sc) elements, fluid inclusions in quartz, as well as phase equilibria modeling (PERPLE_X) showed that rocks coexisted with granite melts and aqueous-carbonic-salt fluids (aH2O = 0.74–0.58) at the peak of metamorphism at 800–850°C and 10–11 kbar. Partial melting initiated sub-isothermal exhumation of rocks to 7.5–8 kbar during diapirism of granitic magmas in the Neoarchean (2.65–2.62 Ga). This is reflected in the specific zoning of garnet grains in terms of the grossular content. A change in the rheology of rocks as a result of partial removal and crystallization of the melt activated shear-zones during further exhumation to 6–5.5 kbar along the P–T decompression–cooling path of 95–100°/kbar, reflecting a slower uplift of rocks in the middle crust. This process was resumed due to thermal effects and interaction of rocks with aqueous fluids (aH2O > 0.85) in the Paleoproterozoic (~2.01 Ga). Such a scenario of metamorphic evolution implies that the Limpopo granulite complex, in general, and its Central Zone, in particular, are the result of the evolution of an ultra-hot orogen, where vertical tectonic movements associated with diapirism were conjugate with horizontal tectonic processes caused by the convergence of continental blocks.

全文:

受限制的访问

作者简介

O. Safonov

Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences; Lomonosov Moscow State University; University of Johannesburg

编辑信件的主要联系方式.
Email: oleg@iem.ac.ru

Faculty of Geology, Department of Geology

俄罗斯联邦, Chernogolovka, Moscow oblast; Moscow; Johannesburg, South Africa

V. Yapaskurt

Lomonosov Moscow State University

Email: oleg@iem.ac.ru

Faculty of Geology

俄罗斯联邦, Moscow

D. van Reenen

University of Johannesburg

Email: oleg@iem.ac.ru

Department of Geology

南非, Johannesburg

C. Smit

University of Johannesburg

Email: oleg@iem.ac.ru

Department of Geology

南非, Johannesburg

S. Ushakova

Lomonosov Moscow State University

Email: oleg@iem.ac.ru

Faculty of Geology

俄罗斯联邦, Moscow

M. Golunova

Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences

Email: oleg@iem.ac.ru
俄罗斯联邦, Chernogolovka, Moscow oblast

参考

  1. Аранович Л.Я., Закиров И.В., Сретенская Н.Г. и др. Тройная система H2O-CO2-NaCl при высоких Р—Т параметрах: эмпирическая модель смешения // Геохимия. 2010. № 5. C. 475–484.
  2. Иванов М.В. Термодинамическая модель флюидной системы H2O-CO2-NaCl-CaCl2 при Р–Т параметрах средней и нижней коры // Петрология. 2023. Т. 31. № 4. С. 408–418.
  3. Лиханов И.И. Метаморфические индикаторы геодинамических обстановок коллизии, растяжения и сдвиговых зон земной коры // Петрология. 2020. № 28. № 1. С. 4–22.
  4. Перчук Л.Л. Магматизм, метаморфизм и геодинамика. М.: Наука, 1993. 192 с.
  5. Aranovich L.Y., Newton R.C. Experimental determination of CO2-H2O activity–composition relations at 600–1000°C and 6–14 kbar by reversed decarbonation and dehydration reactions // Amer. Mineral. 1999. V. 84. P. 1319–1332.
  6. Aranovich L.Y., Podlesskii K.K. Geothermobarometry of high-grade metapelites: simultaneously operating reactions // Geol. Soc. London. Special Publications. 1989. V. 43. P. 45–61.
  7. Aranovich L.Y., Newton R.C., Manning C.E. Brine-assisted anatexis: Experimental melting in the system haplogranite-H2O-NaCl-KCl at deep-crustal conditions // Earth Planet. Sci. Lett. 2013. V. 374. P. 111–120.
  8. Bakker R.J. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties // Chem. Geol. 2003. V. 194. P. 3–23
  9. Bartoli O., Cesare B. Nanorocks: a 10-year-old story // Rendiconti Lincei. Scienze Fisiche e Naturali. 2020. V. 31. P. 249–257.
  10. Bartoli O., Acosta-Vigil A., Ferrero S. et al. Granitoid magmas preserved as melt inclusions in high-grade metamorphic rocks // Amer. Mineral. 2016. V. 101. P. 1543–1559.
  11. Barton J.M., Jr., van Reenen D.D. When was the Limpopo Orogeny? // Precam. Res. 1992. V. 55. P. 7–16.
  12. Belyanin G.A., Rajesh H.M., Sajeev K. et al. Orthopyroxene+sillimanite predating sapphirine+quartz: a rare case of ultrahigh-temperature metamorphism from the Central Zone, Limpopo Complex, South Africa // Canad. Mineral. 2012. V. 50. P. 1153–1163.
  13. Belyanin G.A., Kramers J.D., Vorster C. et al. The timing of successive fluid events in the Southern Marginal Zone of the Limpopo Complex, South Africa: Constraints from 40Ar-39Ar geochronology // Precam. Res. 2014. V. 254. P. 169–193.
  14. Bohlen S.R. On the formation of granulites // J. Metamorph. Geol. 1991. V. 9. P. 223–229.
  15. Bohlen S.R., Wall V.J., Boettcher A. Geobarometry in granulites // Kinetics and Equilibrium in Mineral Reactions. New York: Springer New York, 1983. P. 141–171.
  16. Bolder-Schrijver L.J.A., Kriegsmann L.M., Touret J.L.R. Primary carbonate/CO2 inclusions in sapphirine-bearing granulites from Central Sri-Lanka // J. Metamorph. Geol. 2000. V. 18. P. 259–269.
  17. Boryta M.D., Condie K.C. Geochemistry and origin of the Archean Beit Bridge Complex, Limpopo Belt, South Africa // J. Geol. Soc. London. 1990. V. 147. P. 229–239.
  18. Boshoff R., van Reenen D.D., Smit C.A. et al. Geologic history of the Central Zone of the Limpopo Complex: the West Alldays Area // J. Geol. 2006. V. 114. P. 699–716.
  19. Brandt S., Klemd R., Li O. et al. Pressure-temperature evolution of two granulite-facies metamorphic events (2.62 and 2.02 Ga) in the Central Zone of the Limpopo Belt, South Africa // Precam. Res. 2018. V. 310. P. 471–506.
  20. Brown M., Johnson T. Time’s arrow, time’s cycle: Granulite metamorphism and geodynamics // Mineral. Mag. 2019. V. 83. P. 323–338.
  21. Brown M., Averkin Y.A., McLellan E.L. et al. Melt segregation in migmatites // J. Geophys. Res.: Solid Earth. 1995. V. 100. P. 15655–15679.
  22. Buick I.S., Hermann J., Roland M. et al. The timing of sub-solidus hydrothermal alteration in the Central Zone, Limpopo Belt (South Africa): constraints from titanite U-Pb geochronology and REE partitioning // Lithos. 2007. V. 98. P. 97–117.
  23. Cagnard F., Barbey P., Gapais D. Transition between “Archaean-type” and “modern-type” tectonics: Insights from the Finnish Lapland Granulite Belt // Precam. Res. 2011. V. 187. P. 127–142.
  24. Carvalho B.B., Bartoli O., Cesare B. et al. Primary CO2-bearing fluid inclusions in granulitic garnet usually do not survive // Earth Planet. Sci. Lett. 2020. V. 536. 116170.
  25. Chapman D., Furlong K.P. Thermal state of the continental lower crust // Continental Lower Crust: Developments in Geotectonics. Eds. D.M. Fountain, R. Arculus, R.W. Kay. Amsterdam: Elsevier, 1992. V. 23. P. 179–199.
  26. Chardon D., Choukroune P., Jayananda M. Strain patterns, décollement and incipient sagducted greenstone terrains in the Archaean Dharwar craton (south India) // J. Structural Geol. 1996. V. 18. P. 991–1004.
  27. Chardon D., Gapais D., Cagnard F. Flow of ultra-hot orogens: a view from the Precambrian, clues for the Phanerozoic // Tectonophysics. 2009. V. 477. P. 105–118.
  28. Cesare B., Acosta-Vigil A., Bartoli O. et al. What can we learn from melt inclusions in migmatites and granulites? // Lithos. 2015. V. 239. P. 186–216.
  29. Connolly J.A.D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation // Earth Planet. Sci. Lett. 2005. V. 236. P. 524–541.
  30. Depine G.V., Andronicos C.L., Phipps-Morgan J. Near-isothermal conditions in the middle and lower crust induced by melt migration // Nature. 2008. V. 452. P. 80–83.
  31. de Roever E.W., Harley S.L., Huizenga J.M. Primary cordierite with >2.5 wt% CO2 from the UHT Bakhuis Granulite Belt, Surinam: CO2 fluid phase saturation during ultrahigh-temperature metamorphism // Contrib. Mineral. Petrol. 2023. V. 178. № 26. https://doi.org/10.1007/s00410-023-02003-1
  32. Droop G.T. Reaction history of garnet‐sapphirine granulites and conditions of Archaean high-pressure granulite-facies metamorphism in the Central Limpopo Mobile Belt, Zimbabwe // J. Metamorph. Geol. 1989. V. 7. P. 383–403.
  33. Duan Z., Møller N., Weare J.H. A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties // Geochim. Cosmochim. Acta. 1996. V. 60. P. 1209–1216.
  34. Ebadi A., Johannes W. Beginning of melting and composition of first melts in the system Qz-Ab-Or-H2O-CO2 // Contrib. Mineral. Petrol. 1991. V. 106. P. 286–295.
  35. Elkins L.T., Grove T.L. Ternary feldspar experiments and thermodynamic models // Amer. Mineral. V. 75. 1990. P. 544–559.
  36. England P.C., Thompson A.B. Pressure—temperature—time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust // J. Petrol. 1984. V. 25. P. 894–928.
  37. Ferrero S., Wunder B., Ziemann M.A. et al. Carbonatitic and granitic melts produced under conditions of primary immiscibility during anatexis in the lower crust // Earth Planet. Sci. Lett. 2016. V. 454. P. 121–131.
  38. François C., Philippot P., Rey P. et al. Burial and exhumation during Archean sagduction in the East Pilbara granite-greenstone terrane // Earth Planet. Sci. Lett. 2014. V. 396. P. 235–251.
  39. Geisler T., Schaltegger U., Tomaschek F. Re-equilibration of zircon in aqueous fluids and melts // Elements. 2007. V. 3. P. 43–50.
  40. Gerya T.V. Precambrian geodynamics: concepts and models // Gondwana Res. 2014. V. 25. P. 442–463.
  41. Gerya T.V., Perchuk L.L., van Reenen D.D. et al. Two-dimensional numerical modeling of pressure–temperature–time paths for the exhumation of some granulite facies terrains in the Precambrian // J. Geodynamics. 2000. V. 30. P. 17–35.
  42. Gilbert F., Guillaume D., Laporte D. Importance of fluid immiscibility in the H2O-NaCl-CO2 system and selective CO2 entrapment in granulites: experimental phase diagram at 5–7 kbar, 900°C and wetting textures // Eur. J. Mineral. 1998. V. 10. P. 1109–1123.
  43. Haefeker U., Kaindl R., Tropper P. Improved calibrations for Raman-spectroscopic determinations of CO2 in cordierite using three excitation wavelengths (488, 515 and 633 nm) // Eur. J. Mineral. 2013. V. 25. P. 745–753.
  44. Harley S.L. The origins of granulites: a metamorphic perspective // Geol. Mag. 1989. V. 126. P. 215–247.
  45. Harley S.L. Refining the P–T records of UHT crustal metamorphism // J. Metamorph. Geol. 2008. V. 26. P. 125–154.
  46. Harris N.B.W., Holland T.J.B. The significance of cordierite-hypersthene assemblages from the Beitbridge region of the central Limpopo Belt; evidence for rapid decompression in the Archaean? // Amer. Mineral. 1984. V. 69. P. 1036–1049.
  47. Harlov D.E., Dunkley D. Experimental high-grade alteration of zircon using alkali and Ca-bearing solutions: resetting the zircon geochronometer during metasomatism // Amer. Geophys. Union, Fall Meeting, Abstract. 2010. V41D–2301.
  48. Heinrich W. Fluid immiscibility in metamorphic rocks // Rev. Mineral. Geochem. 2007. V. 65. P. 389–430.
  49. Herms P., Schenk V. Fluid inclusions in granulite-facies metapelites of the Hercynian ancient lower crust of the Serre, Calabria, Southern Italy // Contrib. Mineral. Petrol. 1992. V. 112. P. 393–404.
  50. Hiroi Y., Motoyoshi Y., Ellis D.J. et al. The significance of phosphorus zonation in garnet from high grade pelitic rocks: A new indicator of partial melting // The Antarctic Region: Geological Evolution and Processes. Ed. C.A. Ricci. Proceedings of the VII International Symposium on Antarctic Earth Sciences, Siena, Terra Antarctica. 1997. V. 73. P. 77.
  51. Hiroi Y., Yanagi A., Kato M. et al. Supercooled melt inclusions in lower-crustal granulites as a consequence of rapid exhumation by channel flow // Gondwana Res. 2014. V. 25. P. 226–234.
  52. Hisada K., Miyano T. Petrology and microthermometry of aluminous rocks in the Botswanan Limpopo Central Zone: evidence for isothermal decompression and isobaric cooling // J. Metamorph. Geol. 1996. V. 14. P. 183–197.
  53. Hisada K., Perchuk L.L., Gerya T.V. et al. P—T–fluid evolution in the Mahalapye Complex, Limpopo high-grade terrane, eastern Botswana // J. Metamorph. Geol. 2005. V. 23. P. 313–334.
  54. Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // J. Metamorph. Geol. 2011. V. 29. P. 333–383.
  55. Holzer L., Frei R., Barton Jr J.M. et al. Unraveling the record of successive high grade events in the Central Zone of the Limpopo Belt using Pb single phase dating of metamorphic minerals // Precam. Res. 1998. V. 87. P. 87–115.
  56. Hsu Y.J., Zajacz Z., Ulmer P. et al. Chlorine partitioning between granitic melt and H2O-CO2-NaCl fluids in the Earth’s upper crust and implications for magmatic-hydrothermal ore genesis // Geochim. Cosmochim. Acta. 2019. V. 261. P. 171–190.
  57. Huizenga J.-M., Perchuk L.L., van Reenen D.D. et al. Granite emplacement and the retrograde P—T–fluid evolution of Neoarchean granulites from the Central Zone of the Limpopo Complex // Geol. Soc. Amer. Memoirs. 2011. V. 207. P. 1–18.
  58. Jaeckel P., Kröner A., Kamo S. L. et al. Late Archaean to early Proterozoic granitoid magmatism and high-grade metamorphism in the central Limpopo belt, South Africa // J. Geol. Soc. 1997. V. 154. P. 25–44.
  59. James D.E., Niu F., Rokosky J. Crustal structure of the Kaapvaal craton and its significance for early crustal evolution // Lithos. 2003. V. 71. P. 413–429.
  60. Jiao S., Brown M., Mitchell R.N. et al. Mechanisms to generate ultrahigh-temperature metamorphism // Nature Rev. Earth Environment. 2023. V. 4. P. 298–318.
  61. Johnson E.L. Experimentally determined limits for H2O-CO2-NaCl immiscibility in granulites // Geology. 1991. V. 19. P. 925–928.
  62. Johnson T.E., Brown M., Goodenough K.M. et al. Subduction or sagduction? Ambiguity in constraining the origin of ultramafic–mafic bodies in the Archean crust of NW Scotland // Precam. Res. 2016. V. 283. P. 89–105.
  63. Kawakami T., Hokada T. Linking P—T path with development of discontinuous phosphorus zoning in garnet during high-temperature metamorphism – an example from Lützow-Holm Complex, East Antarctica // J. Mineral. Petrol. Sci. 2010. 1003240134.
  64. Kolesov B.A., Geiger C.A. Cordierite II: The role of CO2 and H2O // Amer. Mineral. 2000. V. 85. P. 1265–1274.
  65. Kramers J.D., Mouri H. The geochronology of the Limpopo Complex: A controversy solved // Geol. Soc. Amer. Memoirs. 2011. V. 207. P. 85–106.
  66. Kramers J.D., McCourt S., Roering C. et al. Tectonic models proposed for the Limpopo Complex: Mutual compatibilities and constraints // Geol. Soc. Amer. Memoirs. 2011. V. 207. P. 311–324.
  67. Kröner A., Jaeckel P., Brandl G. et al. Single zircon ages for granitoid gneisses in the Central Zone of the Limpopo Belt, Southern Africa and geodynamic significance // Precam. Res. 1999. V. 93. P. 299–337.
  68. Kröner A., Brandl G., Brandt S. et al. Geochronological evidence for Archaean and Palaeoproterozoic polymetamorphism in the central zone of the Limpopo Belt, South Africa // Precam. Res. 2018. V. 310. P. 320–347.
  69. Lamadrid H.M., Lamb W.M., Santosh M. et al. Raman spectroscopic characterization of H2O in CO2-rich fluid inclusions in granulite facies metamorphic rocks // Gondwana Res. 2014. V. 26. P. 301–310.
  70. Laurent O., Martin H., Doucelance R. et al. Geochemistry and petrogenesis of high-K “sanukitoids” from the Bulai pluton, Central Limpopo Belt, South Africa: Implications for geodynamic changes at the Archaean–Proterozoic boundary // Lithos. 2011. V. 123. P. 73–91.
  71. Laurent O., Doucelance R., Martin H. et al. Differentiation of the late-Archaean sanukitoid series and some implications for crustal growth: insights from geochemical modelling on the Bulai pluton, Central Limpopo Belt, South Africa // Precam. Res. 2013. V. 227. P. 186–203.
  72. Light M.P.R. The Limpopo mobile belt: a result of continental collision // Tectonics. 1982. V. 1. P. 325–342.
  73. London D., Wolf M.B., Morgan G.B. et al. Experimental silicate–phosphate equilibria in peraluminous granitic magmas, with a case study of the Alburquerque batholith at Tres Arroyos, Badajoz, Spain // J. Petrol. 1999. V. 40. P. 215–240.
  74. Mahan K.H., Goncalves P., Flowers R. et al. The role of heterogeneous strain in the development and preservation of a polymetamorphic record in high-P granulites, western Canadian Shield // J. Metamorph. Geol. 2008. V. 26. P. 669–694.
  75. McDonough W.F., Sun S.S. The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253.
  76. MacGregor A.M. Precambrian formations of tropical southern Africa // Proceedings of the 19th International Geological Congress. 1953. V. 1. P. 39–52.
  77. Millonig L., Zeh A., Gerdes A. et al. Neoarchaean high-grade metamorphism in the Central Zone of the Limpopo Belt (South Africa): Combined petrological and geochronological evidence from the Bulai pluton // Lithos. 2008. V. 103. P. 333–351.
  78. Millonig L.J., Zeh A., Gerdes A. et al. Decompressional heating of the Mahalapye Complex Limpopo Belt, Botswana: a response to Palaeoproterozoic magmatic underplating? // J. Petrol. 2010. V. 51. P. 703–729.
  79. Nguuri T.K., Gore J., James D.E. et al. Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons // Geophys. Res. Lett. 2001. V. 28. P. 2501–2504.
  80. Ni H., Keppler H. Carbon in silicate melts // Rev. Mineral. Geochem. 2013. V. 75. P. 251–287.
  81. Perchuk L.L., Gerya T.V. Formation and evolution of Precambrian granulite terranes: a gravitational redistribution model // Geol. Soc. Amer. Memoirs. 2011. V. 207. P. 289–310.
  82. Perchuk L.L., van Reenen D.D., Varlamov D.A. et al. P–T record of two high-grade metamorphic events in the Central Zone of the Limpopo Complex, South Africa // Lithos. 2008a. V. 103. P. 70–105.
  83. Perchuk L.L., van Reenen D.D., Smit C.A. et al. Role of granite intrusions for the formation of ring structures in granulite complexes: Examples from the Limpopho belt, South Africa // Petrology. 2008b. V. 16. P. 652–678.
  84. Rajesh H.M., Belyanin G.A., Safonov O.G. et al. Fluid-induced dehydration of the Paleoarchean Sand River biotite-hornblende gneiss, Central Zone, Limpopo Complex, South Africa // J. Petrol. 2013. V. 54. P. 41–74.
  85. Rajesh H.M., Safonov O.G., Basupi T.O. et al. Complexity of characterizing granitoids in high-grade terranes: An example from the Neoarchean Verbaard granitoid, Limpopo Complex, Southern Africa // Lithos. 2018а. V. 318. P. 399–418.
  86. Rajesh H.M., Belyanin G.A., Safonov O.G. et al. Garnet-bearing low-Sr and high-Sr Singelele leucogranite: A record of Neoarchean episodic melting in collisional setting and Paleoproterozoic overprint in the Beit Bridge complex, southern Africa // Lithos. 2018b. V. 322. P. 67–86.
  87. Rajesh H.M., Safonov O.G., Belyanin G.A. et al. A ~2.051 Ga anatectic event and peraluminous leucogranite from the Mahalapye Complex, northern edge of the Kaapvaal Craton: Record of an effect of Bushveld mafic magmatism // Lithos. 2020. V. 378. 105805.
  88. Rigby M. J. Conflicting P–T paths within the Central Zone of the Limpopo Belt: A consequence of different thermobarometric methods? // J. Afr. Earth Sci. 2009. V. 54. P. 111–126.
  89. Roering C., van Reenen D.D., de Wit M.J. et al. Structural geological and metamorphic significance of the Kaapvaal Craton–Limpopo Belt contact // Precam. Res. 1992а. V. 55. P. 69–80.
  90. Roering C., van Reenen D.D., Smit C.A. et al. Tectonic model for the evolution of the Limpopo Belt // Precam. Res. 1992b. V. 55. P. 539–552.
  91. Rosenberg C.L., Handy M.R. Experimental deformation of partially melted granite revisited: implications for the continental crust // J. Metamorph. Geol. 2005. V. 23. P. 19–28.
  92. Rudnick R.L., Taylor S.R. The composition and petrogenesis of the lower crust: a xenolith study // J. Geophys. Res.: Solid Earth. 1987. V. 92. P. 13981–14005.
  93. Safonov O.G., Kovaleva E.I., Kosova S.A. et al. Experimental and petrological constraints on local-scale interaction of biotite-amphibole gneiss with H2O-CO2-(K,Na)Cl fluids at middle-crustal conditions: example from the Limpopo Complex, South Africa // Geosci. Front. 2012. V. 3. P. 829–1189.
  94. Safonov O.G., Mityaev A.S., Yapaskurt V.O. et al. Carbonate-silicate inclusions in garnet as evidence for a carbonate-bearing source for fluids in leucocratic granitoids associated with granulites of the Southern Marginal Zone, Limpopo Complex, South Africa // Gondwana Res. 2020. V. 77. P. 147–167.
  95. Safonov O.G., Yapaskurt V.O., Elburg M.A. et al. Melt-to shear-controlled exhumation of granulites in granite–gneiss domes: petrological perspectives from metapelite of the Neoarchean Ha-Tshanzi structure, Central Zone, Limpopo Complex, South Africa // J. Petrol. 2021. V. 62. P. 1–26.
  96. Sandiford M., Powell R. Deep crustal metamorphism during continental extension: modern and ancient examples // Earth Planet. Sci. Lett. 1986. V. 79. P. 151–158.
  97. Schäller M., Steiner O., Studer I. et al. Exhumation of Limpopo Central Zone granulites and dextral continent-scale transcurrent movement at 2.0 Ga along the Palala shear zone, Northern Province, South Africa // Precam. Res. 1999. V. 96. P. 263–288.
  98. Sizova E., Gerya T., Brown M. et al. What drives metamorphism in early Archean greenstone belts? Insights from numerical modeling // Tectonophysics. 2018. V. 746. P. 587–601.
  99. Smit C.A., Roering C., van Reenen D.D. The structural framework of the southern margin of the Limpopo Belt, South Africa // Precam. Res. 1992. V. 55. P. 51–67.
  100. Smit C.A., van Reenen D.D., Roering C. et al. Neoarchean to Paleoproterozoic evolution of the polymetamorphic Central Zone of the Limpopo Complex // Geol. Soc. Amer. Memoirs. 2011. V. 207. P. 213–244.
  101. Spear F.S. Thermobarometry and P—T paths from granulite facies rocks: an introduction // Precam. Res. 1992. V. 55. P. 201–207.
  102. Srikantappa C., Raith M., Touret J.L.R. Synmetamorphic high-density carbonic fluids in the lower crust: evidence from the Nilgiri granulites, southern India // J. Petrol. 1992. V. 33. P. 733–760.
  103. Stevens G., Clemens J.D., Droop C.T. Hydrous cordierite in granulites and crustal magma production // Geology. 1995. V. 23. P. 925–928.
  104. Tacchetto T., Bartoli O., Cesare B. et al. Multiphase inclusions in peritectic garnet from granulites of the Athabasca granulite terrane (Canada): Evidence of carbon recycling during Neoarchean crustal melting // Chem. Geol. 2019. V. 508. P. 197–209.
  105. Teyssier C., Whitney D.L. Gneiss domes and orogeny // Geology. 2002. V. 30. P. 1139–1142.
  106. Thompson A.B., England P.C. Pressure-temperature-time paths of regional metamorphism II. Their inference and interpretation using mineral assemblages in metamorphic rocks // J. Petrol. 1984. V. 25. P. 929–955.
  107. Thompson A.B., Schulmann K., Jezek J. Extrusion tectonics and elevation of lower crustal metamorphic rocks in convergent orogens // Geology. 1997. V. 25. P. 491–494.
  108. Treloar P.J., Coward M.P., Harris N.B. Himalayan-Tibetan analogies for the evolution of the Zimbabwe Craton and Limpopo Belt // Precam. Res. 1992. V. 55. P. 571–587.
  109. Tropper P., Wyhlidal S., Haefeker U.A. et al. An experimental investigation of Na incorporation in cordierite in low-P/high-T metapelites // Mineral. Petrol. 2018. V. 112. P. 199–217.
  110. Tsunogae T., Miyano T. Granulite facies metamorphism in the Central and Southern Marginal Zones of the Limpopo Belt, South Africa // J. Geol. Soc. Japan. 1989. V. 95. P. 1–16.
  111. Tsunogae T., van Reenen D.D. Corundum + quartz and Mg-staurolite bearing granulite from the Limpopo Belt, southern Africa: Implications for a P–T path // Lithos. 2006. V. 92. P. 576–587.
  112. Tsunogae T., van Reenen D.D. High-pressure and ultrahigh-temperature granulite-facies metamorphism of Precambrian high-grade terranes: case study of the Limpopo Complex // Geol. Soc. Amer. 2011. V. 207. P. 107–124.
  113. Tsunogae T., Miyano T., Ridley J. Metamorphic P–T profiles from the Zimbabwe craton to the Limpopo Belt, Zimbabwe // Precam. Res. 1992. V. 55. P. 259–277.
  114. Tsunogae T., Santosh M., Osanai Y. et al. Very high-density carbonic fluid inclusions in sapphirine-bearing granulites from Tonagh Island in the Archean Napier Complex, East Antarctica: implications for CO2 infiltration during ultrahigh-temperature (T > 1.100oC) metamorphism // Contrib. Mineral. Petrol. 2002. V. 143. P. 279–299.
  115. van den Kerkhof A., Thiery R. Carbonic inclusions // Lithos. 2001. V. 55. P. 49–68.
  116. van den Kerkhof A.M., Touret J.L.R., Maijer C. et al. Retrograde methane-dominated fluid inclusions from high-temperature granulites of Rogaland, southwestern Norway // Geochim. Cosmochim. Acta. 1991. V. 55. P. 2533–2544.
  117. van Kal S. Two distinct tectono-metamorphic events in the Central Zone of the Limpopo Complex, South Africa: evidence from the Mt Shanzi sheath fold and the Campbell cross fold near Musina: M. Sc Тhesis, Rand Afrikaans University. 2004.
  118. van Reenen D.D., Barton J.M., Jr., Roering C. et al. Deep crustal response to continental collision: the Limpopo Belt of South Africa // Geology. 1987. V. 15. P. 11–14.
  119. van Reenen D.D., Roering C., Ashwal L.D. et al. Regional geological setting of the Limpopo Belt // Precam. Res. 1992. V. 55. P. 1–5.
  120. van Reenen D.D., Perchuk L.L., Smit C.A. et al. Structural and P–T evolution of a major cross fold in the Central Zone of the Limpopo high-grade terrain, South Africa // J. Petrol. 2004. V. 45. P. 1413–1439.
  121. van Reenen D.D., Boshoff R., Smit C.A. et al. Geochronological problems related to polymetamorphism in the Limpopo Complex, South Africa // Gondwana Res. 2008. V. 14. P. 644–662.
  122. van Reenen D.D., Smit C.A., Perchuk L.L et al. Thrust exhumation of the Neoarchean ultrahigh-temperature Southern Marginal Zone, Limpopo Complex: Convergence of decompression-cooling paths in the hanging wall and prograde P—T paths in the footwall // Eds. D.D. van Reenen, J.D. Kramers, S. McCourt, and L.L. Perchuk. Origin and Evolution of Precambrian High-Grade Terranes, with Special Emphasis on the Limpopo Complex of Southern Africa, Geol. Soc. Amer. Memoir. 2011. V. 207. P. 189–212.
  123. van Reenen D.D., Smit C.A., Perchuk A.L. et al. The Neoarchaean Limpopo Orogeny: Exhumation and regional-scale gravitational crustal overturn driven by a granulite diapir // The Archaean Geology of the Kaapvaal Craton, Southern Africa, Springer, Cham. 2019. P. 185–224.
  124. van Reenen D.D., Clark M.D., Smit C.A. et al. Review of the thermo-tectonic evolution of the Central Zone of the Limpopo Complex with implications for conflicting published geodynamic models // Southern Africa J. Geol. 2023. V. 126. P. 339–372.
  125. Weinberg R.F., Hasalová P. Water-fluxed melting of the continental crust: A review // Lithos. 2015. V. 212. P. 158–188.
  126. Weinberg R.F., Podladchikov Y.Y. The rise of solid-state diapirs // J. Struct. Geol. 1995. V. 17. P. 1183–1195.
  127. White R.W., Powell R., Holland T.J. B. et al. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems // J. Metamorph. Geol. 2014. V. 32. P. 261–286.
  128. Whitney D.L., Teyssier C., Fayon A.K. Isothermal decompression, partial melting and exhumation of deep continental crust // Geol. Soc. London. Special Publications. 2004а. V. 227. P. 313–326.
  129. Whitney D.L., Teyssier C., Vanderhaeghe O. Gneiss domes and crustalflow // Geol. Soc. Amer. Spec. Paper. 2004b. V. 380. P. 15–33.
  130. Whitney D.L., Teyssier C., Rey P. et al. Continental and oceanic core complexes // GSA Bull. 2013. V. 125. P. 273–298.
  131. Windley B.F., Ackermand D., Herd R.K. Sapphirine/kornerupine-bearing rocks and crustal uplift history of the Limpopo belt, Southern Africa // Contrib. Mineral. Petrol. 1984. V. 86. P. 342–358.
  132. Wojdyr M. Fityk: a general-purpose peak fitting program // J. Appl. Crystallography. 2010. V. 43. P. 1126–1128.
  133. Yakymchuk C. Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth // Lithos. 2017. V. 274. P. 412–426.
  134. Yakymchuk C., Acosta-Vigil A. Geochemistry of phosphorus and the behavior of apatite during crustal anatexis: Insights from melt inclusions and nanogranitoids // Amer. Mineral. 2019. V. 104. P. 1765–1780.
  135. Yang Y., Liang C., Neubauer F. et al. Metamorphic evolution and tectonic significance of Neoarchean high-pressure mafic granulites in the Central Limpopo Belt, South Africa // Int. Geol. Rev. 2023. P. 1–25.
  136. Yu C., Yang T., Zhang J. et al. Coexisting diverse P—T–t paths during Neoarchean sagduction: Insights from numerical modeling and applications to the eastern North China Craton // Earth Planet. Sci. Lett. 2022. V. 586. P. 117529.
  137. Zeh A., Gerdes A. HFSE (High Field Strength Elements)-transport and U-Pb-Hf isotope homogenization mediated by Ca-bearing aqueous fluids at 2.04 Ga: Constraints from zircon, monazite, and garnet of the Venetia Klippe, Limpopo Belt, South Africa // Geochim. Cosmochim. Acta. 2014. V. 138. P. 81–100.
  138. Zeh A., Klemd R., Buhlmann S. et al. Pro- and retrograde P–T evolution of granulites of the Beit Bridge Complex (Limpopo Belt, South Africa): constraints from quantitative phase diagrams and geotectonic implications // J. Metamorph. Geol. 2004. V. 22. P. 79–95.
  139. Zeh A., Gerdes A., Klemd R. et al. Archaean to Proterozoic Crustal Evolution in the Central Zone of the Limpopo Belt (South Africa–Botswana): Constraints from combined U-Pb an Lu-Hf isotope analyses of zircon // J. Petrol. 2007. V. 48. P. 1605–1639.
  140. Zeh A., Gerdes A., Barton J.M. et al. U-Th-Pb and Lu-Hf systematics of zircon from TTG’s, leucosomes, meta-anorthosites and quartzites of the Limpopo Belt (South Africa): constraints for the formation, recycling and metamorphism of Palaeoarchaean crust // Precam. Res. 2010. V. 179. P. 50–68.
  141. Zhou T., Klemd R., Brandt S. et al. Timing and duration of discrete tectono-metamorphic events of the polymetamorphic high-grade Central zone of the Limpopo Belt (South Africa): Insight from in situ geochronology of monazite and zircon // Precam. Res. 2022. V. 368. 106469.
  142. Zhou T., Li Q., Li C. et al. Young ages from old garnet in the polyphase metamorphic terrane of the Limpopo Belt, South Africa // Precam. Res. 2020. V. 342. 105695.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Map of the Limpopo complex located between the Kaapvaal and Zimbabwe cratons (van Reenen et al., 2019). The map shows the subdivision of the complex into the Northern Marginal Zone (SKZ), the Central Zone (ZZ) and the Southern Marginal Zone (SKZ), regional shear plastic deformations separating the zones from each other and from cratons, as well as the main components of the ZZ (Beit Bridge, Fikwe, Mahalapi complexes).

下载 (565KB)
3. Fig. 2. A schematic map showing the details of the geological structure of the eastern part of the Central Zone of the Limpopo complex, with the designation of the sampling sites of the studied samples (Table. 1) within the Ha-Tshanzi dome structure, the Campbell transverse fold, the Chipize deformation zone and the northern contact of Pluto Bulai.

下载 (705KB)
4. Fig. 3. Generalization of some published R–T trends in the metamorphic evolution of the Central zone of the Limpopo complex. The R–T trends drawn with dashed lines according to the data (Perchuk et al., 2008a; Brandt et al., 2018; Yang et al., 2023) correspond to the Paleoproterozoic stages of metamorphism.

下载 (183KB)
5. Fig. 4. Variations in the gross composition of the studied metapelites in the coordinates SiO2–(MgO + FeO)–Al2O3. The blue and light purple fields indicate the compositions of high-alumina and low–alumina metapelites of the Central Asian Region, respectively (Boryta, Condie, 1990; Rajesh et al., 2018a), the pink field indicates the compositions of leucocratic Singelele granites (Rajesh et al., 2018b). The green square is the average melt composition modeled for HT-HP group metapelites (see the text).

下载 (57KB)
6. Fig. 5. REE spectra (normalized to CI chondrite; McDonough, Sun, 1995) of some of the studied samples of TS metapelites. Gray field – REE spectra of high-alumina and low-alumina metapelites of Central Asia (Boryta, Condie, 1990). The yellow field is the REE spectra of Singelele leukocratic granitoids (Rajesh et al., 2018b).

下载 (123KB)
7. Fig. 6. Petrographic characteristics of the studied metapelite samples. (a) Crushed pomegranate grains bordered by microzones of deformations, model LP19-29. (b) Pomegranate grains, model LP19-14; in grains in quartz-feldspar bulk, nuclei filled with inclusions are surrounded by a symmetrical zone without inclusions; in grains partially surrounded by cordierite crowns, nuclei with inclusions are shifted to the edges and cut off by the bulk; sillimanite inclusions are present in the marginal zones of some grains. (c) Quartz feldspar lenses and their envelopes of deformation microzones, folded Crd + Bt + Sil + + Qz, mod. O6-19. (d) Garnet porphyroblast, broken by a microzone of deformation, mod. DOV-21. (e) Fragments of large porphyroblasts of garnet, united by a cordierite (+Bt + Sil + Pl + Qz) crown developed along a microzone of deformation, model LP19-21. (f) Xenomorphic grains of garnet surrounded by wide cordierite (+biotite) crowns, model LP19-12. (g) A Ca distribution map showing plagioclase secretions (light grains and borders) in the crowns around the pomegranate grain, mod. DOV-21; Pl1 – primary plagioclase, Pl2 – plagioclase in the crowns, which is a product of garnet decomposition. (h) Substitution of rutile with ilmenite in the cordierite corona around the garnet, mod. O6-19. (i) Rutile-carbonate-sulfide aggregates, model LP19-29. (k) Two generations of garnet, model LP19-08: large grains (Grt1) with numerous inclusions forming lenses, and small grains (Grt2) with inclusions of sillimanite in the bulk of Grt + Bt + Sil + Pl + Qz. (l) Relict grains of garnet and potassium feldspar in the bulk of Crd + Bt + Pl + Qz, mod. LP19-o5. (m) Garnet grains in gneiss, mod. RB-25; some grains are crushed and surrounded by “jackets” of biotite. In the photographs (a–d), yellow dashed lines indicate the position and direction of the microzones of plastic deformations that envelope and break the porphyroblasts of the garnet.

下载 (2MB)
8. Fig. 7. Polycrystalline inclusions in garnet from the studied metapelites. (a) An inclusion consisting of cryptocrystalline aggregates and quartz crystals in a DOV-21 garnet. (b) Crystallized inclusions with a negative crystal shape and not affected by cracks in a DOV-21 garnet. (c) Carbonate-containing inclusions in a garnet grain from a LP19-29 metapelite sample; some inclusions are affected healed cracks. (d) A detailed view of a carbonate-containing inclusion with the form of a negative crystal in a garnet grain from a sample of LP19-12 metapelite.

下载 (396KB)
9. Figure 8. Profiles of Xml and Xc values and Cr2O3, B2o3 and P2O5 contents in pomegranate grains from samples LP 19-14 and DOV-21. (a) The position of the profile in the grain of a garnet enclosed in a quartz-feldspar bulk from the LP19-14 model; biotite is present locally along the edge of the grain. (b) Profiles of XMg and XCa values and the content of Cr2O3, Sc2O3 and P2O5 in the pomegranate grain in Fig. 9a. (c) The position of the profile in the pomegranate grain, partially surrounded by a cordierite crown from the model DOV-21; dotted contours mark relict areas with an increased XCa value, one of which is crossed by the profile in Fig. 9g. (d) Profiles of XMg and XCa values and the content of Cr2O3, Sc2O3 and P2O5 in pomegranate seeds in Fig. 9b.

下载 (557KB)
10. Rhys. 9. The maps are distributed by Mg and Ca in garnet porphyroblasts from the exemplary LP19-29 (a), LP19-21 (b), LP19-08 (c), O6-19 (d), LP19-o5 (e) and RB-25 (e).

下载 (546KB)
11. Fig. 10. Distribution maps of P (a) and Cr (b) in garnet porphyroblasts from the LP19-29 model. I–III zones in porphyroblast (see the text).

下载 (1MB)
12. Fig. 11. Variations in the composition of cordierite in the studied metapelites of the Central Asian region. (a) Variations of XMg and Na content (form units) in cordierite; red diamonds indicate the average values for each sample. (b) The general dependence of the average Na content (form units) in cordierite on the Na2O content in rocks; the point for LP19-o5 deviates from the general pattern.

下载 (148KB)
13. Fig. 12. Representative Raman spectra of cordierite.

下载 (229KB)
14. Fig. 13. Fluid inclusions in quartz from metapelites. (a) Association of CO2 inclusions (HC) and water-salt inclusions (HC) in the LP 19-12 model; (b) water-salt inclusions from the LP19-o5 model.

下载 (178KB)
15. 14. Generalization of water activity data for samples LP19-14, LP19-12, LP19-29, LP19-21, O6-19 and LP19-o5 (see Supplemental 3, ESM_1–ESM_6) along the P–T trends of their metamorphic evolution (see Supplemental 2, ESM_1). The colored rectangles show aH2O variations for the average temperature and pressure indicated (in bar) next to the rectangle.

下载 (105KB)
16. Fig. 15. Generalization of the R–T trends of the studied samples. The gray rectangles and arrow marked S21 show the conditions along the P–T trend of the LP 19-11 metapelite from the Ha-Shanzi dome structure (Safonov et al., 2021). The pink area summarizes the position of the solidi of the studied rocks. I, II, III are the stages of R–T evolution (see the text).

下载 (159KB)
17. Supplementary 1
下载 (10MB)
18. Supplementary 2, ESM 1

下载 (706KB)
19. Supplementary 2, ESM 2

下载 (667KB)
20. Supplementary 2, ESM 3

下载 (704KB)
21. Supplementary 2, ESM 4

下载 (625KB)
22. Supplementary 2, ESM 5

下载 (711KB)
23. Supplementary 2, ESM 6

下载 (616KB)
24. Supplementary 2, ESM 7

下载 (584KB)
25. Supplementary 2, ESM 8

下载 (534KB)
26. Supplementary 2, ESM 9

下载 (498KB)
27. Supplementary 2, ESM 10

下载 (475KB)
28. Supplementary 3, ESM 1

下载 (360KB)
29. Supplementary 3, ESM 2

下载 (292KB)
30. Supplementary 3, ESM 3

下载 (354KB)
31. Supplementary 3, ESM 4

下载 (353KB)
32. Supplementary 3, ESM 5

下载 (360KB)
33. Supplementary 3, ESM 6

下载 (342KB)
34. Supplementary 3, ESM 7

下载 (313KB)
35. Supplementary 3, ESM 8

下载 (281KB)
36. Supplementary 3, ESM 9

下载 (342KB)
37. Supplementary 3, ESM 10

下载 (306KB)

注意

1Дополнительные материалы размещены в электронном виде по doi статьи.


版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».