Carbonatization of Serpentinites of the Mid-Atlantic Ridge: 2. Evolution of chemical and isotopic (δ¹⁸O, δ¹³С, Rb, Sr, Sm, Nd) compositions during exhumation of abyssal peridotites
- Autores: Krasnova E.A.1,2, Silantyev S.A.1, Shabykova V.V.1, Gryaznova A.S.1
-
Afiliações:
- Vernadsky Institute of Geochemistry and Analytical Chemistry RAS
- Moscow Lomonosov State University, Geosciences Department
- Edição: Volume 33, Nº 1 (2025)
- Páginas: 27–44
- Seção: Articles
- URL: https://journal-vniispk.ru/0869-5903/article/view/288606
- DOI: https://doi.org/10.31857/S0869590325010028
- EDN: https://elibrary.ru/vdyouv
- ID: 288606
Citar
Resumo
The alteration of oceanic lithosphere by fluids is the primary driver of water-rock reactions with ultramafic and mafic rocks that transform CO2 into carbonates. Carbonation of peridotites involve the generation of carbonate veins and large-scale carbonatization of serpentinized peridotites exposed on the ocean floor at slow-spreading and ultraslow-spreading ridges and in ophiolites on continents. We report geochemical and isotope data (δ¹⁸O, δ¹³C, Rb, Sr, Sm, Nd) on ultramafic rocks that provide insights into the isotopic trends and fluid evolution of peridotite carbonation and help to understand heterogeneities in alteration and carbonization within peridotite-dominated serpentinization system. The main goal of this work is to reconstruct the hydration history and to understand conditions, isotope and chemical changes during carbonatization and serpentinization of mantle peridotites. Our studies show a comparative analysis of petrological, geochemical, isotope data (strontium, neodymium, oxygen and carbon) and degree of fluid–rock interaction during uplift and emplacement of carbonated serpentinites and present a reconstruction of the long-term fluid interaction of abyssal peridotites from the Mid-Atlantic Ocean Ridge.
Palavras-chave
Texto integral

Sobre autores
E. Krasnova
Vernadsky Institute of Geochemistry and Analytical Chemistry RAS; Moscow Lomonosov State University, Geosciences Department
Autor responsável pela correspondência
Email: e.krasnova@oilmsu.ru
Rússia, Moscow; Moscow
S. Silantyev
Vernadsky Institute of Geochemistry and Analytical Chemistry RAS
Email: e.krasnova@oilmsu.ru
Rússia, Moscow
V. Shabykova
Vernadsky Institute of Geochemistry and Analytical Chemistry RAS
Email: e.krasnova@oilmsu.ru
Rússia, Moscow
A. Gryaznova
Vernadsky Institute of Geochemistry and Analytical Chemistry RAS
Email: e.krasnova@oilmsu.ru
Rússia, Moscow
Bibliografia
- Дубинина Е.О. Стабильные изотопы легких элементов в процессах контаминации и взаимодействия флюид–порода. Автореф.… докт. геол.-мин. наук. М.: ИГЕМ РАН, 2013.
- Дубинина Е.О., Чернышев И.В., Бортников Н.С. и др. Изотопно-геохимические характеристики гидротермального поля Лост Сити // Геохимия. 2007. № 11. С. 1223–1236.
- Дубинина Е.О., Бортников Н.С., Силантьев С.А. Отношение флюид/порода в процессах серпентинизации океанических ультраосновных пород, вмещающих гидротермальное поле Лост Сити, 30 c.ш., САХ // Петрология. 2015. Т. 23. № 6. С. 589–606. https://doi.org/
- Дубинина Е.О., Крамчанинов А.Ю., Силантьев С.А., Бортников Н.С. Влияние скорости осаждения на изотопный состав (δ¹⁸О, δ¹³Cи δ88Sr) карбонатов построек поля Лост Сити (Срединно-Атлантический хребет, 30 с.ш.) // Петрология. 2020. Т. 28. № 4. С. 413–430. https://doi.org/
- Силантьев С.А. Вариации геохимических и изотопных характеристик реститовых перидотитов вдоль простирания Срединно-Атлантического хребта как отражение природы мантийных источников магматизма // Петрология. 2003. Т. 11. № 4. С. 339–362.
- Силантьев С.А., Мироненко М.В., Новоселов А.А. Гидротермальные системы в перидотитовом субстрате медленно-спрединговых хребтов. Моделирование фазовых превращений и баланса вещества: Нисходящая ветвь // Петрология. 2009. Т. 17. № 2. С. 154–174.
- Силантьев С. А., Бортников Н.С., Шатагин К.Н. и др. Перидотит-базальтовая ассоциация САХ на 19°42ʹ–19°59ʹ с. ш.: оценка условий петрогенезиса и баланса вещества при гидротермальном преобразовании океанической коры // Петрология. 2015. Т. 23. № 1. С. 3–25. https://doi.org/ 10.7868/S0869590315010057
- Силантьев С.А., Кубракова И.В., Тютюнник О.А. Характер распределения сидерофильных и халькофильных элементов в серпентинитах океанической литосферы как отражение магматической и внутрикоровой эволюции мантийного субстрата // Геохимия. 2016. № 12. С. 1055–1075. https://doi.org/
- Силантьев С.А., Краснова Е.А., Бадюков Д.Д. и др. Карбонатизация серпентинитов Срединно-Атлантического хребта: 1. Геохимические тренды и минеральные ассоциации // Петрология. 2023. Т. 31. № 2. С. 153–181. https://doi.org/
- Alt J.C. Subseafloor processes in mid-ocean ridge hydrothermal systems // Ed. S.E. Humphris et al. Seafloor Hydrothermal Systems, Physical, Chemical, and Biological Interactions. Geophys. Monogr. AGU, Washington, D.C., 1995. V. 91. Р. 85–114. doi.org/10.1029/GM091p0085
- Alt J.C. Alteration of the upper oceanic crust: mineralogy, chemistry and processes // Eds. E.E. Davis, H. Elderfield. Hydrogeology of the Oceanic Lithosphere, Cambridge Univ. Press, United Kingdom, 2004. P. 495–533.
- Alt J.C., Bach W. Oxygen isotope composition of a section of lower oceanic crust, ODP Hole 735B // Geochem. Geophys. Geosyst. 2006. V. 7. № 12. G12008. https://doi.org/10.1029/2006GC001385.
- Alt J.C., Shanks W.C. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling // Geochim. Cosmochim. Acta. 2003. V. 67. № 4. P. 641–653. https://doi.org/10.1016/S0016-7037(02)01142-0
- Alt J.C., Teagle D.A.H. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801 // Chem. Geol. 2003. V. 201. № 3–4. P. 191–211. https://doi.org/10.1016/S0009-2541(03)00201-8
- Andreani M., Luquot L., Gouze P. et al. Experimental study of carbon sequestration reactions controlled by the percolation of CO2–rich brine through peridotites // Environ. Sci. Technol. 2009. V. 43. № 4. P. 1226–1231. https://doi.org/10.1021/es8018429
- Arai S., Ishimaru S., Mizukami T. Methane and propane micro-inclusions in olivine in titanoclinohumite-bearing dunites from the Sanbagawa high-P metamorphic belt, Japan: Hydrocarbon activity in a subduction zone and Ti mobility // Earth Planet. Sci. Lett. 2012. V. 353–354. P. 1–11. https://doi.org/10.1016/j.epsl.2012.07.043
- Bach W., Alt J.C., Niu Y. et al. The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176) // Geochim. Cosmochim. Acta. 2001. V. 65. № 19. P. 3267–3287. https://doi.org/10.1016/S0016-7037(01)00677-9
- Beinlich A., John T., Vrijmoed J.C. et al. Instantaneous rock transformations in the deep crust driven by reactive fluid flow // Nat. Geosci. 2020. V. 13. № 4. P. 307–311. https://doi.org/10.1038/s41561-020-0554-9
- Bickle M.J., Teagle D.A.H. Strontium alteration in the Troodos ophiolite: implications for fluid fluxes and geochemical transport in mid-ocean ridge hydrothermal systems // Earth Planet. Sci. Lett. 1992. V. 113. № 1–2. P. 219–237. https://doi.org/10.1016/0012-821X(92)90221-G
- Bonatti E., Lawrence J.R., Hamlyn P.R., Breger D. Aragonite from deep sea ultramafic rocks // Geochim. Cosmochim. Acta. 1980. V. 44. № 8. P. 1207–1214. https://doi.org/10.1016/0016-7037(80)90074-5
- Cannat M., Fontaine F., Escartín J. Serpentinization and associated hydrogen and methane fluxes at slow-spreading ridges // Diversity of hydrothermal systems on slow spreading ocean ridges. 2010. V. 188. P. 241–264. https://doi.org/10.1029/2008GM000760
- Carpenter S.J., Lohmann K.C. Sr/Mg ratios of modern marine calcite: Empirical indicators of ocean chemistry and precipitation rate // Geochim. Cosmochim. Acta. 1992. V. 56. P. 1837–1849. https://doi.org/10.1016/0016-7037(92)90314-9
- Charlou J.L., Donval J.P., Fouquet Y. et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (3614ʹN, MAR) // Chem. Geol. 2002. V. 191. № 4. P. 345–359. https://doi.org/10.1016/S0009-2541(02)00134-1
- Delacour A., Fruh-Green G.I., Bernasconi S.M., Kelley D.S. Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30N, MAR) // Geochim. Cosmochim. Acta. 2008. V. 72. № . P. 3681–3702. https://doi.org/10.1016/j.gca.2008.04.039
- Dietzel M., Jianwu T., Leis A., Köhler S.J. Oxygen isotopic fractionation during inorganic calcite precipitation — Effects of temperature, precipitation rate and pH // Chem. Geol. 2009. V. 268. № 1–2. P. 107–115. https://doi.org/10.1016/j.gca.2008.04.039
- Escartín J., Smith D. K., Cann J. R. et al. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere // Nature. 2008. V. 455. P. 790–794. https://doi.org/10.1038/nature07333
- Frost R.B., Beard J.S. On silica activity and serpentinization // J. Petrol. 2007. V. 48. № 7. P. 1351–1368. https://doi.org/10.1093/petrology/egm021
- Früh-Green G.L., Connolly J.A.D., Plas A. et al. Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity // The Subseafloor Вiosphere at Mid-Оcean Ridges. 2004. P. 119–136. https://doi.org/10.1029/144GM08
- Früh-Green G.L., Kelley D.S., Bernasconi S.M. et al. 30.000 years of hydrothermal activity at the Lost City vent field // Science. 2003. V. 301. № 5632. P. 495–498. https://doi.org/10.1126/science.1085582
- Gao Y., Hoefs J., Przybilla R., Snow J.E. A complete oxygen isotope profile through the lower oceanic crust, ODP Hole 735B // Chem. Geol. 2006. V. 233. № 3–4. P. 217–234. https://doi.org/10.1016/j.chemgeo.2006.03.005
- Gillis K.M., Coogan L.A., Pedersen R. Strontium isotope constraints on fluid flow in the upper oceanic crust at the East Pacific Rise // Earth Planet. Sci. Lett. 2005. V. 232. № 1–2. P. 83–94. https://doi.org/10.1016/j.epsl.2005.01.008
- Halls C., Zhao R. Listvenite and related rocks: Perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland // Mineral. Deposita. 1995. V. 30. P. 303–313. https://doi.org/10.1007/BF00196366
- Hart R. Chemical exchange between seawater and deep ocean basalts // Earth Planet. Sci. Lett. 1970. V. 9. № 3. P. 269–279. https://doi.org/10.1016/0012-821X(70)90037-3
- Hart S.R., Blusztajn J.S., Dick H.J.B. et al. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros // Geochim. Cosmochim. Acta. 1999. V. 63. № 23–24. P. 4059–4080. https://doi.org/10.1016/S0016-7037(99)00309-9
- Hess J., Bender M., Schilling J.G. Assessing seawater/basalt exchange of strontium isotopes in hydrothermal processes on the flanks of mid-ocean ridges // Earth Planet. Sci. Lett. 1991. V. 103. № 1–3. P. 133–142. https://doi.org/10.1016/0012-821X(91)90155-B
- Hövelmann J., Austrheim H., Beinlich A., Anne Munz I. Experimental study of the carbonation of partially serpentinized and weathered peridotites // Geochim. Cosmochim. Acta. 2011. V. 75. № 22. P. 6760–6779. https://doi.org/10.1016/j.gca.2011.08.032
- Jacobsen S.B., Wasserburg G.J. Sm-Nd isotopic evolution of chondrites // Earth Planet. Sci. Lett. 1980. V. 50. № 1. P. 139–155. https://doi.org/10.1016/0012-821X(80)90125-9
- Kempton P.D., Fitton J.G., Hawkesworth C.J., Ormerod D.S. Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the southwestern United States // J. Geophys. Res.: Solid Earth. 1991. V. 96. № B8. P. 13713–13735. https://doi.org/10.1029/91JB00373
- Kelemen P.B., Matter J. In situ carbonation of peridotite for CO2 storage // PNAS. 2008. V. 105. № 45. P. 17295–17300. https://doi.org/10.1073/pnas.0805794105
- Kellermeier M., Glaab F., Klein R. et al. The effect of silica on polymorphic precipitation of calcium carbonate: an on-line energy-dispersive X-ray diffraction (EDXRD) study // Nanoscale. 2013. V. 5. № 15. P. 7054–7065. https://doi.org/10.1039/c3nr00301a
- Kelley D.S., Früh-Green G.L. Volatile lines of descent in submarine plutonic environments: Insights from stable isotope and fluid inclusion analyses // Geochim. Cosmochim. Acta. 2001. V. 65. № 19. P. 3325–3346. https://doi.org/10.1016/S0016-7037(01)00667-6
- Kelley D.S., Karson J.A., Früh-Green G.L. et al. A serpentinite-hosted ecosystem: The Lost City hydrothermal field // Science. 2005. V. 307. № 5714. P. 1428–1434. https://doi.org/10.1126/science.1102556
- Kim S.T., O’Neil J.R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates // Geochim. Cosmochim. Acta. 1997. V. 61. № 16. P. 3461–3475. https://doi.org/10.1016/S0016-7037(97)00169-5
- Lacinska A.M., Styles M.T., Bateman K. et al. An experimental study of the carbonation of serpentinite and partially serpentinised peridotites // Front. Earth Sci. 2017. https://doi.org/10.3389/feart.2017.00037
- Lang S.Q., Früh-Green G.L., Bernasconi S.M. et al. Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted system // Geochim. Cosmochim. Acta. 2012. V. 92. P. 82–99. https://doi.org/10.1016/j.gca.2012.06.006
- Lister C.R.B. On the thermal balance of a mid-ocean ridge // Geophys. J. R. Astron. Soc. 1972. V. 26. № 5. P. 515–535. https://doi.org/10.1111/j.1365-246X.1972.tb05766.x
- Ludwig K.A., Kelley D.S., Butterfield D.A. et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field // Geochim. Cosmochim. Acta. 2006. V. 70. № 14. P. 3625–3645. https://doi.org/10.1016/j.gca.2006.04.016
- Lumsden D.N., Morrison J.W., Lloyd R.V. The role of iron and Mg/Ca ratio in dolomite synthesis at 192C // J. Geol. 1995. V. 103. № 1. P. 51–61. https://doi.org/10.1086/629721
- Malvoisin B. Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical // Earth Planet. Sci. Lett. 2015. V. 430. P. 75–85. https://doi.org/10.1016/j.epsl.2015.07.043
- McCollom T.M., Bach W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks // Geochim. Cosmochim. Acta. 2009. V. 73. № 3. P. 856–875 https://doi.org/10.1016/j.gca.2008.10.032
- McCollom T.M., Seewald J.S. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions // Earth Planet. Sci. Lett. 2006. V. 243. № 1–2. P. 74–84. https://doi.org/10.1016/j.epsl.2006.01.027
- McCrea J.M. On the isotopic chemistry of carbonates and a paleotemperature scale // J. Chemic. Phys. 1950. V. 18. № 6. P. 849–857. https://doi.org/10.1063/1.1747785
- Michard A., Albarède F., Minster J.F., Charlou J.-L. Rare-earth elements and uranium in high temperature solutions from the East Pacific Rise hydrothermal vent field (13N) // Nature. 1983 V. 303. P. 795–797. https://doi.org/10.1038/303795a0
- Milliken K.L., Morgan J.K. Chemical evidence for near seafloor precipitation of calcite in serpentinites (Site 897) and serpentinite breccias (Site 899), Iberia Abyssal Plane // Eds. R.B. Whitmarsh, D.S. Sawyer, A. Klaus, D.G. Masson. Proceedings of the Ocean Drilling Program, Scientific Results. 1996. V. 149. P. 553–558.
- Palandri J.L., Reed M.H. Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation // Geochim. Cosmochim. Acta. 2004. V. 68. № 5. P. 1115–1133. https://doi.org/10.1016/j.gca.2003.08.006
- Peuble S., Andreani M., Godard M. et al. Carbonate mineralization in percolated olivine aggregates: Linking effects of crystallographic orientation and fluid flow // Amer. Mineral. 2015. V. 100. № 2–3. P. 474–482. https://doi.org/10.2138/am-2015-4913
- Picazo S., Malvoisin B., Baumgartner L., Bouvier A.S. Low temperature serpentinite replacement by carbonates during seawater influx in the Newfoundland Margin // Minerals. 2020. V. 10. № 2. P. 184. https://doi.org/10.3390/min10020184
- Proskurowski G., Lilley M.D., Seewald J.S. et al. Abiogenic hydrocarbon production at Lost City hydrothermal field // Science. 2008. V. 319. P. 604–607. https://doi.org/10.1126/ science.1151194
- Schwarzenbach E.M., Früh-Green G.L., Bernasconi S.M. et al. Serpentinization and carbon sequestration: A study of two ancient peridotite-hosted hydrothermal systems // Chem. Geol. 2013. V. 351. P. 115–133. https://doi.org/10.1016/j.chemgeo.2013.05.016
- Shanks W.C., Böhlke J.K., Seal R.R. Stable isotopes in mid-ocean ridge hydrothermal systems: Interactions between fluids, minerals, and organisms // Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. 1995. V. 70. P. 194–221. doi: 10.1515/9781501508745-011
- Snow J.E., Dick H.J.B. Pervasive magnesium loss by marine weathering of peridotite // Geochim. Cosmochim. Acta. 1995. V. 59. № 20. P. 4219–4235. https://doi.org/10.1016/0016-7037(95)00239-V
- Stakes D., Mével C., Cannat M., Chaput T. Metamorphic stratigraphy of Hole 735B // Proc. Ocean Drill. Program Sci. Results. 1991. V. 118. P. 153–180.
- Sulpis O., Agrawal1 P., Wolthers M. et al. Aragonite dissolution protects calcite at the seafloor // Nature Communicat. 2022. V. 13. P. 1104. https://doi.org/10.1038/s41467-022-28711-z
- Ternieten L., Früh-Green G.L., Bernasconi S.M. Carbonate mineralogy in mantle peridotites of the Atlantis Massif (IODP Expedition 357) // J. Geophys. Res.: Solid Earth. 2021. V. 126. e2021JB021885 https://doi.org/10.3929/ethz-b-000522609
- Torres M.E., Mix A.C., Rugh W.D. Precise δ¹³C analysis of dissolved inorganic carbon in natural waters using automated headspace sampling and continuous-flow mass spectrometry // Limnol. Oceanogr. Methods. 2005. V. 3. № 8. P. 349–360. https://doi.org/10.4319/lom.2005.3.349
- Ulrich M., Muñoz M., Guillot S. et al. Dissolution-precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite // Contrib. Mineral. Petrol. 2014. V. 167. № 1 P. 1—19. https://doi.org/10.1007/s00410-013-0952-8
- Wheat C.G., Mottl M.J. Geochemical fluxes through mid-ocean ridge flanks // Hydrogeology of the Oceanic Lithosphere. 2004. P. 627–658.
- Yang T., Jiang S.Y. A new method to determine carbon isotopic composition of dissolved inorganic carbon in seawater and pore waters by CO2-water equilibrium // Rapid Commun. Mass Spectrom. 2012. V. 26. P. 805–810. https://doi.org/10.1002/rcm.6164
Arquivos suplementares
