Basaltic melts of Ocean Islands (OIB) and their sources estimated from the investigation of melt inclusions and quenched glasses of rocks
- Authors: Naumov V.B.1, Girnis A.V.2, Dorofeeva V.A.1
-
Affiliations:
- Vernadsky Institute of Geochemistry and Analytical Chemistry
- Institute for Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences
- Issue: Vol 33, No 2 (2025)
- Pages: 20-42
- Section: Articles
- URL: https://journal-vniispk.ru/0869-5903/article/view/290042
- DOI: https://doi.org/10.31857/S0869590325020022
- EDN: https://elibrary.ru/uhmdqf
- ID: 290042
Cite item
Abstract
Using our updated database of published analyses of mineral-hosted melt inclusions and glasses from volcanic rocks, the compositions of mafic melts of ocean islands (OIB) were considered. Mean contents of major, trace, and volatile elements were calculated for the complete data array and some particular comprehensively studied complexes: Iceland, Hawaii, Canaries, Galapagos, and Reunion. It was found that the mean contents of most elements fall between the compositions of magmas from mid-ocean ridges (most depleted) and intraplate continental environments (most enriched). A detailed analysis of element ratios in the magmatic complexes showed that they could be approximated as mixtures of magmas from one depleted and two enriched reservoirs. The contents of trace elements in the supposed mantle sources were calculated. The depleted source is best manifested in Iceland and almost exactly matches the composition of the depleted mantle, from which mid-ocean ridge basalts were derived.
Keywords
Full Text

About the authors
V. B. Naumov
Vernadsky Institute of Geochemistry and Analytical Chemistry
Author for correspondence.
Email: naumov@geokhi.ru
Russian Federation, Moscow
A. V. Girnis
Institute for Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences
Email: girnis@igem.ru
Russian Federation, Moscow
V. A. Dorofeeva
Vernadsky Institute of Geochemistry and Analytical Chemistry
Email: naumov@geokhi.ru
Russian Federation, Moscow
References
- Гирнис А.В. Распределение редких элементов между минералами и расплавом: параметризация экспериментальных данных для оливина, пироксенов и полевых шпатов // Геохимия. 2024. № 3. С. 227–240.
- Наумов В.Б., Коваленко В.И., Дорофеева В.А., Ярмолюк В.В. Средние содержания петрогенных, летучих и редких элементов в магматических расплавах различных геодинамических обстановок // Геохимия. 2004. № 10. С. 1113–1124.
- Наумов В.Б.., Коваленко В.И., Дорофеева В.А. и др. Средний состав магматических расплавов главных геодинамических обстановок по данным изучения расплавных включений в минералах и закалочных стекол пород // Геохимия. 2010. № 12. С. 1266–1288.
- Наумов В.Б., Дорофеева В.А., Гирнис А.В., Ярмолюк В.В. Сравнение содержаний петрогенных, летучих и редких элементов в расплавах океанических хребтов по данным изучения включений в минералах и закалочных стекол пород // Геохимия. 2014. № 5. С. 387–405.
- Наумов В.Б., Гирнис А.В., Дорофеева В.А., Коваленкер В.А. Концентрация рудных элементов в магматических расплавах и природных флюидах по данным изучения включений в минералах // Геология рудн. месторождений. 2016а. № 4. С. 367–384.
- Наумов В.Б., Дорофеева В.А., Гирнис А.В. Летучие и редкие элементы в щелочных и субщелочных расплавах океанических островов по данным изучения включений в минералах и закалочных стекол пород // Геохимия. 2016б. № 6. С. 558–573.
- Наумов В.Б., Дорофеева В.А., Гирнис А.В. Петрогенные, летучие, рудные и редкие элементы в магматических расплавах главных геодинамических обстановок Земли. I. Средние содержания // Геохимия. 2023. № 12. С. 1253–1272.
- Akbari M., Ghorbani M.R., Cousens B.L., Graham I.T. A robust discrimination scheme for ocean island basalts based on Ce/Rb, Tb/La, and Ba/Nb ratios // Chem. Geol. 2023. V. 628. 121486.
- Albert H., Costa F., Di Muro A. et al. Magma interactions, crystal mush formation, timescales, and unrest during caldera collapse and lateral eruption at ocean island basaltic volcanoes (Piton de la Fournaise, La Reunion) // Earth Planet. Sci. Lett. 2019. V. 515. P. 187–199.
- Arevalo Jr. R., McDonough W.F. Chemical variations and regional diversity observed in MORB // Chem. Geol. 2010. V. 271. P. 70–85.
- Arevalo Jr. R., McDonough W.F., Luong M. The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution // Earth Planet. Sci. Lett. 2009. V. 278. P. 361–369.
- Bianco T.A., Ito G., van Hunen J. et al. Geochemical variation at the Hawaiian hot spot caused by upper mantle dynamics and melting of a heterogeneous plume // Geochemistry, Geophysics, Geosystems. 2008. V. 9. No 11. Q11003. doi: 10.1029/2008GC002111
- Boudoire G., Di Muro A., Michon L., Metrich N. Footprints and conditions of multistep alkali enrichment in basaltic melts at Piton de la Fournaise (La Reunion Island, Indian Ocean) // Bull. Volcanol. 2021. V. 83. P. 1–31.
- Bureau H., Metrich N., Pineau F., Semet M.P. Magma-conduit interaction at Piton de la Fournaise volcano (Reunion Island): a melt and fluid inclusion study // J. Volcanol. Geotherm. Res. 1998. V. 84. P. 34–60.
- Cannao E., Schiavi F., Casiraghi G. et al. Effect of chlorine on water incorporation in magmatic amphibole: experimental constraints with a micro-Raman spectroscopy approach // Eur. J. Mineral. 2022. V. 34. P. 19–34.
- Caracciolo A., Bali E., Gudfinnsson G.H. et al. Temporal evolution of magma and crystal mush storage conditions in the Bardarbunga–Veidivoth volcanic system, Iceland // Lithos. 2020. V. 352–353. P. 1–16.
- Chauvel C., Maury R.C., Blais S. et al. The size of plume heterogeneities constrained by Marquesas isotopic stripes // Geochemistry, Geophysics, Geosystems. 2012. V. 13. No 1. Q07005. doi: 10.1029/2012GC004123
- Cushman B., Sinton J., Ito G., Dixon J.E. Glass compositions, plume-ridge interaction, and hydrous melting along the Galapagos Spreading Center, 90.5o W to 98o W // Geochemistry, Geophysics, Geosystems. 2004. V. 5. No 8. P. 1–30.
- Davis M.G., Garcia M.O., Wallace P. Volatiles in glasses from Mauna Loa Volcano, Hawai'i: implications for magma degassing and contamination, and growth of Hawaiian volcanoes // Contrib. Mineral. Petrol. 2003. V. 144. P. 570–591.
- Dayton K., Gazel E., Wieser P.E. et al. Magmatics storage and volatile fluxes of the 2021 La Palma eruption // Geochemistry, Geophysics, Geosystems. 2024. V. 25. No 6.
- Di Muro A., Metrich N., Vergani D. et al. The shallow plumbing system of Piton de la Fournaise Volcano (La Reunion Island, Indian Ocean) revealed by the major 2007 caldera-forming eruption // J. Petrology. 2014. V. 55. P. 1287–1315.
- Famin V., Welsch B., Okumura S. et al. Three differentiation stages of a single magma at Piton de la Fournaise volcano (Reunion hot spot) // Geochemistry, Geophysics, Geosystems. 2009. V. 10. No 1. P. 1–18.
- Ferguson D.J., Gonnermann H.M., Ruprecht P. et al. Magma decompression rates during explosive eruptions of Kilauea volcano, Hawaii, recorded by melt embayments // Bull. Volcanol. 2016. V. 78. P. 1–12.
- Gale A., Dalton C.A., Langmuir C.H. et al. The mean composition of ocean ridge basalts // Geochemistry, Geophysics, Geosystems. 2013. V. 14. doi: 10.1029/2012GC004334
- Gomez-Ulla A., Sigmarsson O., Huertas M.J., Devi-dal J.L. The historical basanite-alkali basalt-tholeiite suite at Lanzarote, Canary Islands: Carbonated melts of heterogeneous mantle source? // Chem. Geol. 2018. V. 494. P. 56–68.
- Gurenko A.A., Schmincke H.-U. Petrology, geochemistry, S, Cl, and F abundances, and S oxidation state of sideromelane glass shards from Pleistocene ash layers north and south of Gran Canaria (ODP Leg 157) // Contrib. Mineral. Petrol. 1998a. V. 131. P. 95–110.
- Gurenko A.A., Schmincke H.-U. Geochemistry of sideromelane and felsic glass shards in Pleistocene ash layers at Sites 953, 954, and 956 // Proceedings of the Ocean Drilling Program, Scientific Results. 1998b. V. 157. P. 421–428.
- Gurenko A.A., Hansteen T.H., Schmincke H.-U. Melt, crystal, and fluid inclusions in olivine and clynopyroxene phenocrysts from the submarine shield stage hyaloclastites of Gran Canaria, Sites 953 and 956 // Proceedings of the Ocean Drilling Program, Scientific Results. 1998. V. 157. P. 375–401.
- Haddadi B., Sigmarsson O., Larsen G. Magma storage beneath Grimsvotn volcano, Iceland, constrained by clinopyroxene-melt thermobarometry and volatiles in melt inclusions and groundmass glass // J. Geophys. Res.: Solid Earth. 2017. V. 122. No 9. P. 6984–6997.
- Halldorsson S.A., Bali E., Hartley M.E. et al. Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland: compositional and mineralogical characteristics, temporal variability and magma storage // Contrib. Mineral. Petrol. 2018. V. 172. P. 1–26.
- Halldorsson S.A., Marshalt E.W., Caraccloto A. et al. Rapid shifting of a deep magmatic sourceat Fagradalsfjall volcano, Iceland // Nature. 2022. V. 609. P. 529–534.
- Hammer J.E., Coombs M.L., Shamberger P.J., Kimura J.-I. Submarine sliver in North Kona: A window into the early magmatic and growth history of Hualalai Volcano, Hawaii // J. Volcanol. Geotherm. Res. 2006. V. 151. P. 157–188.
- Hansteen T.H., Gurenko A.A. Sulfur, chlorine, and fluorine in glass inclusions in olivine and clynopyroxene from basaltic hyaloclastites representing the Gran Canaria shield stage at Sites 953 and 956 // Proceedings of the Ocean Drilling Program, Scientific Results. 1998. V. 157. P. 403–410.
- Hartley M.E., Thordarson T., Fitton J.G. Oxygen isotopes in melt inclusions and glasses from the Askja volcanic system, North Iceland // Geochim. Cosmochim. Acta. 2013. V. 123. P. 55–73.
- Hartley M., Maclennan J., Edmonds M., Thordarson T. Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions // Earth Planet. Sci. Lett. 2014. V. 393. P. 120–131.
- Hartley M.E., Neave D.A., Maclennan J. et al. Diffusive over-hydration of olivine-hosted melt inclusions // Earth Planet. Sci. Lett. 2015. V. 425. P. 168–178.
- Hartley M.E., de Hoog J.C.M., Shorttle O. Boron isotopic signatures of melt inclusions from North Iceland reveal recycled material in the Icelandic mantle source // Geochim. Cosmochim. Acta. 2021. V. 294. P. 273–294.
- Hauri E.H. Osmium isotopes and mantle convection // Phil. Trans. R. Soc. Lond. A. 2002. V. 360. P. 2371–2382.
- Hauri E.H., Maclennan J., McKenzie D. et al. CO2 content beneath northern Iceland and the variability of mantle carbon // Geology. 2018. V. 46. No 1. P. 55–58.
- Helz R.T., Cottrell E., Brounce M.N., Kelley K.A. Olivine-melt relationships and syneruptive redox variations in the 1959 eruption of Kilauea Volcano as revealed by XANES // J. Volcanol. Geotherm. Res. 2017. V. 333–334. P. 1–14.
- Hemond C., Arndt N.T., Lichtenstein U. et al. The heterogeneous Iceland plume: Nd-Sr-O isotopes and trace-element constraints // J. Geophys. Res. 1993. V. 98. P. 15833–15850.
- Herbrich A., Hauff F., Hoernle K. et al. A 1.5 Ma record of plume-ridge interaction at the Western Galapagos Spreading Center (91o40'–92o00' W) // Geochim. Cosmochim. Acta. 2016. V. 185. P. 141–159.
- Hofmann A.W. Mantle geochemistry: The message from oceanic volcanism // Nature. 1997. V. 385. P. 219–229.
- Hofmann A.W. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements // Treatise on Geochemistry. Oxford, U.K.: Elsevier–Pergammon, 2004. V. 2. P. 61–97.
- Hofmann A.W., White W.M. Mantle plumes from ancient oceanic crust // Earth Planet. Sci. Lett. 1982. V. 57. P. 421–436.
- Ireland T.J., Arevalo Jr. R., Walker R.J., McDonough W.F. Tungsten in Hawaiian picrites: A compositional model for the sources of Hawaiian lavas // Geochim. Cosmochim. Acta. 2009. V. 73. P. 4517–4530.
- Kelley K.A., Kingsley R., Schilling J.-G. Composition of plume-influenced mid-ocean ridge lavas and glasses from Mid-Atlantic Ridge, East Pacific Rise, Galapagos Spreading Center, and Gulf of Aden // Geochemistry, Geophysics, Geosystems. 2013. V. 14. No 1. P. 223–242.
- Kirstein L.A., Walowski K.J., Jones R.E. et al. Volatiles and intraplate magmatism: a variable role for carbonated and altered oceanic lithosphere in ocean basalt formation // J. Petrol. 2023. V. 64. No 3. P. 1–21.
- Koleszar A.M., Saal A.E., Hauri E.H. et al. The volatile contents of the Galapagos plume: evidence for H2O and F open system behavior in melt inclusions // Earth Planet. Sci. Lett. 2009. V. 287. P. 442–452.
- Koornneef J.M., Stracke A., Bourdon B. et al. Melting of a two-component source beneath Iceland // J. Petrol. 2012. V. 53. P. 127–157.
- Le Maitre R.W., Streckeisen A., Zanettin B. et al. A Classification and Glossary of Terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. 2nd Ed. Cambridge: Cambridge University Press, 2002. P. 236.
- Lerner A.H., Wallace P.J., Shea T. et al. The petrologic and degassing behavior of sulfur and other magmatic volatiles from the 2018 eruption of Kilauea, Hawai'i: melt concentrations, magma storage depths, and magma recycling // Bull. Volcanol. 2021. V. 83. P. 1–12.
- Luais B. Temporal changes in Nd isotopic composition of Piton de la Fournaise magmatism (Réunion Island, Indian Ocean) // Geochemistry, Geophysics, Geosystems. 2004. V. 5. 2002GC000502.
- Marschall H.R., Wanless V.D., Shimizu N. et al. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle // Geochim. Cosmochim. Acta. 2017. V. 207. P. 102–138.
- Marsh J., Edmonds M., Houghton B. et al. Magma mingling during the 1959 eruption of Kilauea Iki, Hawai'i // Bull. Volcanol. 2024. V. 86. P. 1–13.
- Matthews S., Shorttle O., Maclennan J., Rudge J.F. The global melt inclusion C/Ba array: Mantle variability, melting process, or degassing? // Geochim. Cosmochim. Acta. 2021. V. 293. P. 525–543.
- Moore L.R., Gazel E., Bodnar R.J. The volatile budget of Hawaiian magmatism: Constraints from melt inclusions from Haleakala volcano, Hawaii // J. Volcanol. Geotherm. Res. 2021. V. 410. No 107144.
- Mundl A., Touboul M., Jackson M.G. et al. Tungsten-182 heterogeneity in modern ocean island basalts // Science. 2017. V. 356. P. 66–69.
- Nielsen R.L. The effects of re-homogenization on plagioclase hosted melt inclusions // Geochemistry, Geophysics, Geosystems. 2011. V. 12. No 10. P. 1–16.
- Norman M.D., Garcia M.O., Kamenetsky V.S., Nielsen R.L. Olivine-hosted melt inclusions in Hawaiian picrites: equilibration, melting, and plume source characteristics // Chem. Geol. 2002. V. 183. P. 143–168.
- O'Nions R.K., Pankhurst R.J., Gronvold K. Nature and development of basalt magma-sources beneath Iceland and the Reykjanes ridge // J. Petrol. 1976. V. 17. P. 315–338.
- Palme H., O’Neill H.St.C. Cosmochemical estimates of mantle composition. Treatise on Geochemistry. 2nd Ed. Elsevier Ltd. 2014. V. 3. P. 1–39.
- Pearce J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust // Lithos. 2008. V. 100. P. 14–48.
- Peterson M.E., Saal A.E., Nakamura E. et al. Origin of the “ghost plagioclase” signature in Galapagos melt inclusions: New evidence from Pb isotopes // J. Petrol. 2014. V. 55. P. 2193–2216.
- Peterson M.E., Saal A.E., Kurz M.D. et al. Submarine basaltic glasses from the Galapagos Archipelago: Determining the volatile budget of the mantle plume // J. Petrol. 2017. V. 58. P. 1419–1450.
- Phipps Morgan J. Thermodynamics of pressure release melting of a veined plum pudding mantle // Geochemistry, Geophysics, Geosystems. 2001. V. 2. No 4. 1001. doi: 10.1029/2000GC000049.
- Pietruszka A.J., Norman M.D., Garcia M.O. et al. Chemical heterogeneity in the Hawaiian mantle plume from the alteration and dehydration of recycled oceanic crust // Earth Planet. Sci. Lett. 2013. V. 361. P. 298–309.
- Ranta E., Hallddorsson S.A., Oladottir B.A. et al. Magmatic controls on volcanic sulfur emissions at the Iceland hotspot // Geochemistry, Geophysics, Geosystems. 2024. V. 25. P. 1–29.
- Ren Z.-Y., Ingle S., Takahashi E. et al. The chemical structure of the Hawaiian mantle plume // Nature. 2005. V. 436. No 11. P. 837–840.
- Ryan J.G., Langmuir C.H. The systematics of lithium abundances in young volcanic rocks // Geochim. Cosmochim. Acta. 1987. V. 51. P. 1727–1741.
- Saal A.E., Hauri E.H., Langmuir C.H., Perfit M.R. Vapor undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle // Nature. 2002. V. 419. P. 451–455.
- Salters V.J.M., Stracke A. Composition of the depleted mantle // Geochemistry, Geophysics, Geosystems. 2004. V. 5. P. 1–27.
- Schilling J.-G. Iceland mantle plume: Geochemical study of Reykjanes Ridge // Nature. 1973. V. 242. P. 565–571.
- Schipper C.I., Le Voyer M., Moussallam Y. et al. Degassing and magma mixing during the eruption of Surtsey Volcano (Iceland, 1963–1967): the signatures of a dynamic and discrete rift propagation event // Bull. Volcanol. 2016. V. 78. P. 1–19.
- Seaman C., Sherman S.B., Garcia M.O. et al. Volatiles in glasses from the HSDP2 drill core // Geochemistry, Geophysics, Geosystems. 2004. V. 5. No 9. P. 1–42.
- Sides I., Edmonds M., Maclennan J. et al. Magma mixing and high fountaining during the 1959 Kilauea Iki eruption, Hawai'i // Earth Planet. Sci. Lett. 2014a. V. 400. P. 102–112.
- Sides I.R., Edmonds M., Maclennan J. et al. Eruption style at Kilauea volcano in Hawai'i linked to primary melt composition // Nature Geosci. 2014b. V. 7. No 6. P. 464–469.
- Sobolev A.V., Hofmann A.W., Jochum K.P. et al. A young source for the Hawaiian plume // Nature. 2011. V. 476. No 7361. P. 434–437.
- Stracke A., Bizimis M., Salters V.J.M. Recycling oceanic crust: Quantitative constraints // Geochemistry, Geophysics, Geosystems. 2003. V. 4. 8003. doi: 10.1029/2001GC000223
- Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes // Eds. A.D. Saunders, M.J. Norry. Magmatism in Ocean Basins. Geol. Soc. London. Spec. Publ. 1989. V. 42. P. 313–345.
- Taracsak Z., Hartley M.E., Burgess R. et al. High fluxes of deep volatiles from ocean island volcanoes: Insights from El Hierro, Canary Islands // Geochim. Cosmochim. Acta. 2019. V. 258. P. 19–36.
- Taylor R.N., Davila-Harris P., Branney M.J. et al. Dynamics of a chemically pulsing mantle plume // Earth Planet. Sci. Lett. 2020. V. 537. 116182.
- Thomson A., Maclennan J. The distribution of olivine compositions in Icelandic basalts and picrites // J. Petrol. 2013. V. 54. P. 745–768.
- Tucker J.M., Hauri E.H., Pietruszka A.J. et al. A high carbon content of the Hawaiian mantle from olivine-hosted melt inclusions // Geochim. Cosmochim. Acta. 2019. V. 254. P. 156–172.
- Vigouroux N., Williams-Jones A.E., Wallace P., Staudacher T. The November 2002 eruption of Piton de la Fournaise, Reunion: tracking the pre-eruptive thermal evolution of magma using melt inclusions // Bull. Volcanol. 2009. V. 21. P. 1077–1089.
- Vlastelic I., Menard G., Gannoun A. et al. Magma degassing during the April 2007 collapse of Piton de la Fournaise: The record of semi-volatile trace elements (Li, B, Cu, In, Sn, Cd, Re, Tl, Bi) // J. Volcanol. Geotherm. Res. 2013. V. 254. P. 94–107.
- Warren J.M. Global variations in abyssal peridotite compositions // Lithos. 2016. V. 248–251. P. 193–219. https://doi.org/10.1016/j.lithos.2015.12.023.
- Weaver B.L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints // Earth Planet. Sci. Lett. 1991. V. 104. P. 381–397. doi: org/10.1016/0012-821X(91)90217-6.
- White W.M. Sources of oceanic basalts: radiogenic isotope evidence // Earth Planet. Sci. Lett. 1985. V. 115. P. 211–226.
- White W.M. Isotopes, DUPAL, LLSVPs, and Anekantavada // Chem. Geol. 2015. V. 419. P. 10–28.
- Wieser P.E., Jenner F., Edmonds M. et al. Chalcophile elements track the fate of sulfur at Kilauea Volcano, Hawai'i // Geochim. Cosmochim. Acta. 2020. V. 282. P. 245–275.
- Wieser P.E., Lamadrid H., Maclennan J. et al. Reconstructing magma storage depths for the 2018 Kilauean eruption from melt inclusions CO2 contents: The importance of vapor bubbles // Geochemistry, Geophysics, Geosystems. 2021. V. 22. No 1. P. 1–30.
- Wieser P.E., Edmonds M., Gansecki C. et al. Explosive activity on Kilauea's Lower East Rift Zone fueled by a volatile-rich, dacitic melt // Geochemistry, Geophysics, Geosystems. 2022. V. 23. No 2. P. 1–24.
- Workman R.K., Hart S.R. Major and trace element composition of the depleted mantle // Earth Planet. Sci. Lett. 2005. V. 231. P. 53–72.
- Xu G.P., Huang S.C., Frey F.A., Blichert-Toft J. et al. The distribution of geochemical heterogeneities in the source of Hawaiian shield lavas as revealed by a transect across the strike of the Loa and Kea spatial trends: East Molokai to West Molokai to Penguin Bank // Geochim. Cosmochim. Acta. 2014. V. 132. P. 214–237.
- Zindler A., Hart S. Geochemical geodynamics // Earth Planet. Sci. Lett. 1986. V. 14. P. 493–571.
- Zindler A., Staudigel H., Batiza R. Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity // Earth Planet. Sci. Lett. 1984. V. 70. P. 175–195.
Supplementary files
