Basaltic melts of Ocean Islands (OIB) and their sources estimated from the investigation of melt inclusions and quenched glasses of rocks

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using our updated database of published analyses of mineral-hosted melt inclusions and glasses from volcanic rocks, the compositions of mafic melts of ocean islands (OIB) were considered. Mean contents of major, trace, and volatile elements were calculated for the complete data array and some particular comprehensively studied complexes: Iceland, Hawaii, Canaries, Galapagos, and Reunion. It was found that the mean contents of most elements fall between the compositions of magmas from mid-ocean ridges (most depleted) and intraplate continental environments (most enriched). A detailed analysis of element ratios in the magmatic complexes showed that they could be approximated as mixtures of magmas from one depleted and two enriched reservoirs. The contents of trace elements in the supposed mantle sources were calculated. The depleted source is best manifested in Iceland and almost exactly matches the composition of the depleted mantle, from which mid-ocean ridge basalts were derived.

Full Text

Restricted Access

About the authors

V. B. Naumov

Vernadsky Institute of Geochemistry and Analytical Chemistry

Author for correspondence.
Email: naumov@geokhi.ru
Russian Federation, Moscow

A. V. Girnis

Institute for Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: girnis@igem.ru
Russian Federation, Moscow

V. A. Dorofeeva

Vernadsky Institute of Geochemistry and Analytical Chemistry

Email: naumov@geokhi.ru
Russian Federation, Moscow

References

  1. Гирнис А.В. Распределение редких элементов между минералами и расплавом: параметризация экспериментальных данных для оливина, пироксенов и полевых шпатов // Геохимия. 2024. № 3. С. 227–240.
  2. Наумов В.Б., Коваленко В.И., Дорофеева В.А., Ярмолюк В.В. Средние содержания петрогенных, летучих и редких элементов в магматических расплавах различных геодинамических обстановок // Геохимия. 2004. № 10. С. 1113–1124.
  3. Наумов В.Б.., Коваленко В.И., Дорофеева В.А. и др. Средний состав магматических расплавов главных геодинамических обстановок по данным изучения расплавных включений в минералах и закалочных стекол пород // Геохимия. 2010. № 12. С. 1266–1288.
  4. Наумов В.Б., Дорофеева В.А., Гирнис А.В., Ярмолюк В.В. Сравнение содержаний петрогенных, летучих и редких элементов в расплавах океанических хребтов по данным изучения включений в минералах и закалочных стекол пород // Геохимия. 2014. № 5. С. 387–405.
  5. Наумов В.Б., Гирнис А.В., Дорофеева В.А., Коваленкер В.А. Концентрация рудных элементов в магматических расплавах и природных флюидах по данным изучения включений в минералах // Геология рудн. месторождений. 2016а. № 4. С. 367–384.
  6. Наумов В.Б., Дорофеева В.А., Гирнис А.В. Летучие и редкие элементы в щелочных и субщелочных расплавах океанических островов по данным изучения включений в минералах и закалочных стекол пород // Геохимия. 2016б. № 6. С. 558–573.
  7. Наумов В.Б., Дорофеева В.А., Гирнис А.В. Петрогенные, летучие, рудные и редкие элементы в магматических расплавах главных геодинамических обстановок Земли. I. Средние содержания // Геохимия. 2023. № 12. С. 1253–1272.
  8. Akbari M., Ghorbani M.R., Cousens B.L., Graham I.T. A robust discrimination scheme for ocean island basalts based on Ce/Rb, Tb/La, and Ba/Nb ratios // Chem. Geol. 2023. V. 628. 121486.
  9. Albert H., Costa F., Di Muro A. et al. Magma interactions, crystal mush formation, timescales, and unrest during caldera collapse and lateral eruption at ocean island basaltic volcanoes (Piton de la Fournaise, La Reunion) // Earth Planet. Sci. Lett. 2019. V. 515. P. 187–199.
  10. Arevalo Jr. R., McDonough W.F. Chemical variations and regional diversity observed in MORB // Chem. Geol. 2010. V. 271. P. 70–85.
  11. Arevalo Jr. R., McDonough W.F., Luong M. The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution // Earth Planet. Sci. Lett. 2009. V. 278. P. 361–369.
  12. Bianco T.A., Ito G., van Hunen J. et al. Geochemical variation at the Hawaiian hot spot caused by upper mantle dynamics and melting of a heterogeneous plume // Geochemistry, Geophysics, Geosystems. 2008. V. 9. No 11. Q11003. doi: 10.1029/2008GC002111
  13. Boudoire G., Di Muro A., Michon L., Metrich N. Footprints and conditions of multistep alkali enrichment in basaltic melts at Piton de la Fournaise (La Reunion Island, Indian Ocean) // Bull. Volcanol. 2021. V. 83. P. 1–31.
  14. Bureau H., Metrich N., Pineau F., Semet M.P. Magma-conduit interaction at Piton de la Fournaise volcano (Reunion Island): a melt and fluid inclusion study // J. Volcanol. Geotherm. Res. 1998. V. 84. P. 34–60.
  15. Cannao E., Schiavi F., Casiraghi G. et al. Effect of chlorine on water incorporation in magmatic amphibole: experimental constraints with a micro-Raman spectroscopy approach // Eur. J. Mineral. 2022. V. 34. P. 19–34.
  16. Caracciolo A., Bali E., Gudfinnsson G.H. et al. Temporal evolution of magma and crystal mush storage conditions in the Bardarbunga–Veidivoth volcanic system, Iceland // Lithos. 2020. V. 352–353. P. 1–16.
  17. Chauvel C., Maury R.C., Blais S. et al. The size of plume heterogeneities constrained by Marquesas isotopic stripes // Geochemistry, Geophysics, Geosystems. 2012. V. 13. No 1. Q07005. doi: 10.1029/2012GC004123
  18. Cushman B., Sinton J., Ito G., Dixon J.E. Glass compositions, plume-ridge interaction, and hydrous melting along the Galapagos Spreading Center, 90.5o W to 98o W // Geochemistry, Geophysics, Geosystems. 2004. V. 5. No 8. P. 1–30.
  19. Davis M.G., Garcia M.O., Wallace P. Volatiles in glasses from Mauna Loa Volcano, Hawai'i: implications for magma degassing and contamination, and growth of Hawaiian volcanoes // Contrib. Mineral. Petrol. 2003. V. 144. P. 570–591.
  20. Dayton K., Gazel E., Wieser P.E. et al. Magmatics storage and volatile fluxes of the 2021 La Palma eruption // Geochemistry, Geophysics, Geosystems. 2024. V. 25. No 6.
  21. Di Muro A., Metrich N., Vergani D. et al. The shallow plumbing system of Piton de la Fournaise Volcano (La Reunion Island, Indian Ocean) revealed by the major 2007 caldera-forming eruption // J. Petrology. 2014. V. 55. P. 1287–1315.
  22. Famin V., Welsch B., Okumura S. et al. Three differentiation stages of a single magma at Piton de la Fournaise volcano (Reunion hot spot) // Geochemistry, Geophysics, Geosystems. 2009. V. 10. No 1. P. 1–18.
  23. Ferguson D.J., Gonnermann H.M., Ruprecht P. et al. Magma decompression rates during explosive eruptions of Kilauea volcano, Hawaii, recorded by melt embayments // Bull. Volcanol. 2016. V. 78. P. 1–12.
  24. Gale A., Dalton C.A., Langmuir C.H. et al. The mean composition of ocean ridge basalts // Geochemistry, Geophysics, Geosystems. 2013. V. 14. doi: 10.1029/2012GC004334
  25. Gomez-Ulla A., Sigmarsson O., Huertas M.J., Devi-dal J.L. The historical basanite-alkali basalt-tholeiite suite at Lanzarote, Canary Islands: Carbonated melts of heterogeneous mantle source? // Chem. Geol. 2018. V. 494. P. 56–68.
  26. Gurenko A.A., Schmincke H.-U. Petrology, geochemistry, S, Cl, and F abundances, and S oxidation state of sideromelane glass shards from Pleistocene ash layers north and south of Gran Canaria (ODP Leg 157) // Contrib. Mineral. Petrol. 1998a. V. 131. P. 95–110.
  27. Gurenko A.A., Schmincke H.-U. Geochemistry of sideromelane and felsic glass shards in Pleistocene ash layers at Sites 953, 954, and 956 // Proceedings of the Ocean Drilling Program, Scientific Results. 1998b. V. 157. P. 421–428.
  28. Gurenko A.A., Hansteen T.H., Schmincke H.-U. Melt, crystal, and fluid inclusions in olivine and clynopyroxene phenocrysts from the submarine shield stage hyaloclastites of Gran Canaria, Sites 953 and 956 // Proceedings of the Ocean Drilling Program, Scientific Results. 1998. V. 157. P. 375–401.
  29. Haddadi B., Sigmarsson O., Larsen G. Magma storage beneath Grimsvotn volcano, Iceland, constrained by clinopyroxene-melt thermobarometry and volatiles in melt inclusions and groundmass glass // J. Geophys. Res.: Solid Earth. 2017. V. 122. No 9. P. 6984–6997.
  30. Halldorsson S.A., Bali E., Hartley M.E. et al. Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland: compositional and mineralogical characteristics, temporal variability and magma storage // Contrib. Mineral. Petrol. 2018. V. 172. P. 1–26.
  31. Halldorsson S.A., Marshalt E.W., Caraccloto A. et al. Rapid shifting of a deep magmatic sourceat Fagradalsfjall volcano, Iceland // Nature. 2022. V. 609. P. 529–534.
  32. Hammer J.E., Coombs M.L., Shamberger P.J., Kimura J.-I. Submarine sliver in North Kona: A window into the early magmatic and growth history of Hualalai Volcano, Hawaii // J. Volcanol. Geotherm. Res. 2006. V. 151. P. 157–188.
  33. Hansteen T.H., Gurenko A.A. Sulfur, chlorine, and fluorine in glass inclusions in olivine and clynopyroxene from basaltic hyaloclastites representing the Gran Canaria shield stage at Sites 953 and 956 // Proceedings of the Ocean Drilling Program, Scientific Results. 1998. V. 157. P. 403–410.
  34. Hartley M.E., Thordarson T., Fitton J.G. Oxygen isotopes in melt inclusions and glasses from the Askja volcanic system, North Iceland // Geochim. Cosmochim. Acta. 2013. V. 123. P. 55–73.
  35. Hartley M., Maclennan J., Edmonds M., Thordarson T. Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions // Earth Planet. Sci. Lett. 2014. V. 393. P. 120–131.
  36. Hartley M.E., Neave D.A., Maclennan J. et al. Diffusive over-hydration of olivine-hosted melt inclusions // Earth Planet. Sci. Lett. 2015. V. 425. P. 168–178.
  37. Hartley M.E., de Hoog J.C.M., Shorttle O. Boron isotopic signatures of melt inclusions from North Iceland reveal recycled material in the Icelandic mantle source // Geochim. Cosmochim. Acta. 2021. V. 294. P. 273–294.
  38. Hauri E.H. Osmium isotopes and mantle convection // Phil. Trans. R. Soc. Lond. A. 2002. V. 360. P. 2371–2382.
  39. Hauri E.H., Maclennan J., McKenzie D. et al. CO2 content beneath northern Iceland and the variability of mantle carbon // Geology. 2018. V. 46. No 1. P. 55–58.
  40. Helz R.T., Cottrell E., Brounce M.N., Kelley K.A. Olivine-melt relationships and syneruptive redox variations in the 1959 eruption of Kilauea Volcano as revealed by XANES // J. Volcanol. Geotherm. Res. 2017. V. 333–334. P. 1–14.
  41. Hemond C., Arndt N.T., Lichtenstein U. et al. The heterogeneous Iceland plume: Nd-Sr-O isotopes and trace-element constraints // J. Geophys. Res. 1993. V. 98. P. 15833–15850.
  42. Herbrich A., Hauff F., Hoernle K. et al. A 1.5 Ma record of plume-ridge interaction at the Western Galapagos Spreading Center (91o40'–92o00' W) // Geochim. Cosmochim. Acta. 2016. V. 185. P. 141–159.
  43. Hofmann A.W. Mantle geochemistry: The message from oceanic volcanism // Nature. 1997. V. 385. P. 219–229.
  44. Hofmann A.W. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements // Treatise on Geochemistry. Oxford, U.K.: Elsevier–Pergammon, 2004. V. 2. P. 61–97.
  45. Hofmann A.W., White W.M. Mantle plumes from ancient oceanic crust // Earth Planet. Sci. Lett. 1982. V. 57. P. 421–436.
  46. Ireland T.J., Arevalo Jr. R., Walker R.J., McDonough W.F. Tungsten in Hawaiian picrites: A compositional model for the sources of Hawaiian lavas // Geochim. Cosmochim. Acta. 2009. V. 73. P. 4517–4530.
  47. Kelley K.A., Kingsley R., Schilling J.-G. Composition of plume-influenced mid-ocean ridge lavas and glasses from Mid-Atlantic Ridge, East Pacific Rise, Galapagos Spreading Center, and Gulf of Aden // Geochemistry, Geophysics, Geosystems. 2013. V. 14. No 1. P. 223–242.
  48. Kirstein L.A., Walowski K.J., Jones R.E. et al. Volatiles and intraplate magmatism: a variable role for carbonated and altered oceanic lithosphere in ocean basalt formation // J. Petrol. 2023. V. 64. No 3. P. 1–21.
  49. Koleszar A.M., Saal A.E., Hauri E.H. et al. The volatile contents of the Galapagos plume: evidence for H2O and F open system behavior in melt inclusions // Earth Planet. Sci. Lett. 2009. V. 287. P. 442–452.
  50. Koornneef J.M., Stracke A., Bourdon B. et al. Melting of a two-component source beneath Iceland // J. Petrol. 2012. V. 53. P. 127–157.
  51. Le Maitre R.W., Streckeisen A., Zanettin B. et al. A Classification and Glossary of Terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. 2nd Ed. Cambridge: Cambridge University Press, 2002. P. 236.
  52. Lerner A.H., Wallace P.J., Shea T. et al. The petrologic and degassing behavior of sulfur and other magmatic volatiles from the 2018 eruption of Kilauea, Hawai'i: melt concentrations, magma storage depths, and magma recycling // Bull. Volcanol. 2021. V. 83. P. 1–12.
  53. Luais B. Temporal changes in Nd isotopic composition of Piton de la Fournaise magmatism (Réunion Island, Indian Ocean) // Geochemistry, Geophysics, Geosystems. 2004. V. 5. 2002GC000502.
  54. Marschall H.R., Wanless V.D., Shimizu N. et al. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle // Geochim. Cosmochim. Acta. 2017. V. 207. P. 102–138.
  55. Marsh J., Edmonds M., Houghton B. et al. Magma mingling during the 1959 eruption of Kilauea Iki, Hawai'i // Bull. Volcanol. 2024. V. 86. P. 1–13.
  56. Matthews S., Shorttle O., Maclennan J., Rudge J.F. The global melt inclusion C/Ba array: Mantle variability, melting process, or degassing? // Geochim. Cosmochim. Acta. 2021. V. 293. P. 525–543.
  57. Moore L.R., Gazel E., Bodnar R.J. The volatile budget of Hawaiian magmatism: Constraints from melt inclusions from Haleakala volcano, Hawaii // J. Volcanol. Geotherm. Res. 2021. V. 410. No 107144.
  58. Mundl A., Touboul M., Jackson M.G. et al. Tungsten-182 heterogeneity in modern ocean island basalts // Science. 2017. V. 356. P. 66–69.
  59. Nielsen R.L. The effects of re-homogenization on plagioclase hosted melt inclusions // Geochemistry, Geophysics, Geosystems. 2011. V. 12. No 10. P. 1–16.
  60. Norman M.D., Garcia M.O., Kamenetsky V.S., Nielsen R.L. Olivine-hosted melt inclusions in Hawaiian picrites: equilibration, melting, and plume source characteristics // Chem. Geol. 2002. V. 183. P. 143–168.
  61. O'Nions R.K., Pankhurst R.J., Gronvold K. Nature and development of basalt magma-sources beneath Iceland and the Reykjanes ridge // J. Petrol. 1976. V. 17. P. 315–338.
  62. Palme H., O’Neill H.St.C. Cosmochemical estimates of mantle composition. Treatise on Geochemistry. 2nd Ed. Elsevier Ltd. 2014. V. 3. P. 1–39.
  63. Pearce J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust // Lithos. 2008. V. 100. P. 14–48.
  64. Peterson M.E., Saal A.E., Nakamura E. et al. Origin of the “ghost plagioclase” signature in Galapagos melt inclusions: New evidence from Pb isotopes // J. Petrol. 2014. V. 55. P. 2193–2216.
  65. Peterson M.E., Saal A.E., Kurz M.D. et al. Submarine basaltic glasses from the Galapagos Archipelago: Determining the volatile budget of the mantle plume // J. Petrol. 2017. V. 58. P. 1419–1450.
  66. Phipps Morgan J. Thermodynamics of pressure release melting of a veined plum pudding mantle // Geochemistry, Geophysics, Geosystems. 2001. V. 2. No 4. 1001. doi: 10.1029/2000GC000049.
  67. Pietruszka A.J., Norman M.D., Garcia M.O. et al. Chemical heterogeneity in the Hawaiian mantle plume from the alteration and dehydration of recycled oceanic crust // Earth Planet. Sci. Lett. 2013. V. 361. P. 298–309.
  68. Ranta E., Hallddorsson S.A., Oladottir B.A. et al. Magmatic controls on volcanic sulfur emissions at the Iceland hotspot // Geochemistry, Geophysics, Geosystems. 2024. V. 25. P. 1–29.
  69. Ren Z.-Y., Ingle S., Takahashi E. et al. The chemical structure of the Hawaiian mantle plume // Nature. 2005. V. 436. No 11. P. 837–840.
  70. Ryan J.G., Langmuir C.H. The systematics of lithium abundances in young volcanic rocks // Geochim. Cosmochim. Acta. 1987. V. 51. P. 1727–1741.
  71. Saal A.E., Hauri E.H., Langmuir C.H., Perfit M.R. Vapor undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle // Nature. 2002. V. 419. P. 451–455.
  72. Salters V.J.M., Stracke A. Composition of the depleted mantle // Geochemistry, Geophysics, Geosystems. 2004. V. 5. P. 1–27.
  73. Schilling J.-G. Iceland mantle plume: Geochemical study of Reykjanes Ridge // Nature. 1973. V. 242. P. 565–571.
  74. Schipper C.I., Le Voyer M., Moussallam Y. et al. Degassing and magma mixing during the eruption of Surtsey Volcano (Iceland, 1963–1967): the signatures of a dynamic and discrete rift propagation event // Bull. Volcanol. 2016. V. 78. P. 1–19.
  75. Seaman C., Sherman S.B., Garcia M.O. et al. Volatiles in glasses from the HSDP2 drill core // Geochemistry, Geophysics, Geosystems. 2004. V. 5. No 9. P. 1–42.
  76. Sides I., Edmonds M., Maclennan J. et al. Magma mixing and high fountaining during the 1959 Kilauea Iki eruption, Hawai'i // Earth Planet. Sci. Lett. 2014a. V. 400. P. 102–112.
  77. Sides I.R., Edmonds M., Maclennan J. et al. Eruption style at Kilauea volcano in Hawai'i linked to primary melt composition // Nature Geosci. 2014b. V. 7. No 6. P. 464–469.
  78. Sobolev A.V., Hofmann A.W., Jochum K.P. et al. A young source for the Hawaiian plume // Nature. 2011. V. 476. No 7361. P. 434–437.
  79. Stracke A., Bizimis M., Salters V.J.M. Recycling oceanic crust: Quantitative constraints // Geochemistry, Geophysics, Geosystems. 2003. V. 4. 8003. doi: 10.1029/2001GC000223
  80. Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes // Eds. A.D. Saunders, M.J. Norry. Magmatism in Ocean Basins. Geol. Soc. London. Spec. Publ. 1989. V. 42. P. 313–345.
  81. Taracsak Z., Hartley M.E., Burgess R. et al. High fluxes of deep volatiles from ocean island volcanoes: Insights from El Hierro, Canary Islands // Geochim. Cosmochim. Acta. 2019. V. 258. P. 19–36.
  82. Taylor R.N., Davila-Harris P., Branney M.J. et al. Dynamics of a chemically pulsing mantle plume // Earth Planet. Sci. Lett. 2020. V. 537. 116182.
  83. Thomson A., Maclennan J. The distribution of olivine compositions in Icelandic basalts and picrites // J. Petrol. 2013. V. 54. P. 745–768.
  84. Tucker J.M., Hauri E.H., Pietruszka A.J. et al. A high carbon content of the Hawaiian mantle from olivine-hosted melt inclusions // Geochim. Cosmochim. Acta. 2019. V. 254. P. 156–172.
  85. Vigouroux N., Williams-Jones A.E., Wallace P., Staudacher T. The November 2002 eruption of Piton de la Fournaise, Reunion: tracking the pre-eruptive thermal evolution of magma using melt inclusions // Bull. Volcanol. 2009. V. 21. P. 1077–1089.
  86. Vlastelic I., Menard G., Gannoun A. et al. Magma degassing during the April 2007 collapse of Piton de la Fournaise: The record of semi-volatile trace elements (Li, B, Cu, In, Sn, Cd, Re, Tl, Bi) // J. Volcanol. Geotherm. Res. 2013. V. 254. P. 94–107.
  87. Warren J.M. Global variations in abyssal peridotite compositions // Lithos. 2016. V. 248–251. P. 193–219. https://doi.org/10.1016/j.lithos.2015.12.023.
  88. Weaver B.L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints // Earth Planet. Sci. Lett. 1991. V. 104. P. 381–397. doi: org/10.1016/0012-821X(91)90217-6.
  89. White W.M. Sources of oceanic basalts: radiogenic isotope evidence // Earth Planet. Sci. Lett. 1985. V. 115. P. 211–226.
  90. White W.M. Isotopes, DUPAL, LLSVPs, and Anekantavada // Chem. Geol. 2015. V. 419. P. 10–28.
  91. Wieser P.E., Jenner F., Edmonds M. et al. Chalcophile elements track the fate of sulfur at Kilauea Volcano, Hawai'i // Geochim. Cosmochim. Acta. 2020. V. 282. P. 245–275.
  92. Wieser P.E., Lamadrid H., Maclennan J. et al. Reconstructing magma storage depths for the 2018 Kilauean eruption from melt inclusions CO2 contents: The importance of vapor bubbles // Geochemistry, Geophysics, Geosystems. 2021. V. 22. No 1. P. 1–30.
  93. Wieser P.E., Edmonds M., Gansecki C. et al. Explosive activity on Kilauea's Lower East Rift Zone fueled by a volatile-rich, dacitic melt // Geochemistry, Geophysics, Geosystems. 2022. V. 23. No 2. P. 1–24.
  94. Workman R.K., Hart S.R. Major and trace element composition of the depleted mantle // Earth Planet. Sci. Lett. 2005. V. 231. P. 53–72.
  95. Xu G.P., Huang S.C., Frey F.A., Blichert-Toft J. et al. The distribution of geochemical heterogeneities in the source of Hawaiian shield lavas as revealed by a transect across the strike of the Loa and Kea spatial trends: East Molokai to West Molokai to Penguin Bank // Geochim. Cosmochim. Acta. 2014. V. 132. P. 214–237.
  96. Zindler A., Hart S. Geochemical geodynamics // Earth Planet. Sci. Lett. 1986. V. 14. P. 493–571.
  97. Zindler A., Staudigel H., Batiza R. Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity // Earth Planet. Sci. Lett. 1984. V. 70. P. 175–195.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Average element contents in mafic melts normalized to the composition of the primitive mantle (Palme and O’Neill, 2014). MORB and CONT are the mafic melts of mid-ocean ridges and intraplate continental complexes, respectively, estimated in our previous works based on the compositions of melt inclusions and rock glasses (Naumov et al., 2023). OIB is the average composition of all mafic melts of oceanic islands. Average compositions of some individual complexes for which about 1000 or more analyses are available are also shown: HAW – Hawaii, GAL – Galapagos Islands, REU – Reunion Island, CAN – Canary Islands and ICE – Iceland.

Download (733KB)
3. Fig. 2. Alkali–silica classification diagram for melt compositions from oceanic islands: Iceland (ICE), Hawaii (HAW), Reunion Island (REU), Galapagos Islands (GAL), and Canary Islands (CAN) (Table 2). Rock fields (Le Maitre et al., 2002): PB – picrobasalt, B – basalt, AB – basaltic andesite, TAB – basaltic trachyandesite, TB – trachybasalt, B–T – basanite and tephrite, PT – phonotephrite, TP – tephriphonolite, F – foidite.

Download (974KB)
4. Fig. 3. Variations in TiO2 depending on the MgO content in melts of oceanic islands. Arrows point to the composition of olivine, the main mineral in melts with a high MgO content. At MgO content < 10 wt. %, the dependences become steeper, which is primarily due to the crystallization of minerals with a lower MgO content (pyroxenes, plagioclase). See Fig. 2 for legend.

Download (951KB)
5. Fig. 4. Variations in Sr content as a function of MgO in oceanic island melts. The diagram clearly distinguishes groups of melts with low and high Sr contents, with a boundary between them at ~260 ppm Sr. The histograms show that all melts from the Hawaiian Islands (HAW) and Reunion Island (REU) are characterized by high Sr contents, while a bimodal distribution is observed for Iceland and the Galapagos Islands. In what follows, we consider separately the low-Sr and high-Sr compositions of Iceland (ICE¹ and ICE², respectively) and the Galapagos Islands (GAL¹ and GAL², respectively). Melts from the Canary Islands (CAN) are not shown in this figure, since almost all of them are characterized by high Sr contents (>500 ppm).

Download (957KB)
6. Fig. 5. Variations of smoothed TiO₂ values ​​as a function of MgO for different groups of melt compositions. The diagram is based on the same input data as Fig. 3. Smoothing consisted of calculating median TiO₂ values ​​for MgO values ​​with an interval of 1 wt.% and a window of ± 1 wt.%. For the HAW and ICE¹ compositions, the interquartile ranges (first and third quartiles) are also shown.

Download (367KB)
7. Fig. 6. Examples of variations in smoothed ratios of different elements in oceanic island melts. The diagrams show variations in the behavior of element ratios with different degrees of coherence. PM and DM are the compositions of the primitive and depleted mantle according to (Palme, O’Neill, 2013) and (Salters, Stracke, 2004), respectively.

Download (399KB)
8. Fig. 7. Calculated compositions of three ocean island magma sources normalized to the primitive mantle content (Palme, O’Neill, 2014). Vertical lines are standard errors (2σ). The composition of the depleted mantle, the source of mid-ocean ridge basaltic melts (DM according to Salters, Stracke, 2004), is also shown.

Download (948KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».