Experimental Study of Phenakite Solubility in Aluminosilicate Melts: Implication for the Genesis of Be-deposits

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The solubility of phenakite (Be2SiO4) in granite melts was experimentally studied at temperatures of 1000 and 1100°C and pressures of 1 and 4 kbar in dry conditions and in the presence of 10 wt. % H2O. The starting materials were granite glasses with agpaitic coefficient of 1–2.5 and natural phenakite. It was found that the solubility of phenakite increases with increasing agpaitic coefficient (Na + K)/Al of the melt, and the solubility of BeO is higher in hydrous melts than in dry ones. The solubility of phenakite also increases with pressure. The obtained experimental data were generalized with the previous data in the form of an equation describing the solubility of BeO in alkaline-granite melts coexisting with crystalline phases of Be, depending on the agpaitic coefficient, temperature and pressure. The results of the experiments and their generalizations support the model of Be concentration in alkaline water-containing melts – products of differentiation of granite magmas.

About the authors

N. I. Suk

D.S. Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences

Email: sukni@iem.ac.ru
Chernogolovka, Moscow district, Russia

B. B. Damdinov

Central Research Institute of Geological Prospecting for Base and Precious Metals

Email: kotelnik1950@yandex.ru
Moscow, Russia

A. R. Kotelnikov

D.S. Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences

Email: sukni@iem.ac.ru
Chernogolovka, Moscow district, Russia

L. B. Damdinova

Geological Institute, Siberian Branch of Russian Academy of Sciences

Email: sukni@iem.ac.ru
Ulan-Ude, Russia

V. B. Khubanov

O.Yu. Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: sukni@iem.ac.ru
Moscow, Russia

N. S. Bortnikov

Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Author for correspondence.
Email: sukni@iem.ac.ru
Moscow, Russia

References

  1. Беус А.А., Диков Ю.П. Геохимия бериллия в процессах эндогенного минералообразования (на основе гидротермального эксперимента). М.: Недра, 1967. 160 с.
  2. Генетические типы гидротермальных месторождений бериллия // Под. ред. А.И. Гинзбурга. М.: Недра, 1975. 248 с.
  3. Дамдинова Л.Б., Рейф Ф.Г. Особенности формирования разнотипной прожилковой бериллиевой минерализации на Ермаковском F-Bе месторождении (Западное Забайкалье) // Геология и геофизика. 2004. Т. 45. № 8. С. 979–991.
  4. Дамдинова Л.Б., Рейф Ф.Г. Происхождение кварц-флюоритовой залежи с низким содержанием бериллия на Ермаковском месторождении богатых F-Be руд // Геология и геофизика. 2008. Т. 49. № 11. С. 1084–1097.
  5. Дамдинова Л.Б., Дамдинов Б.Б., Брянский Н.В. Процессы формирования флюорит-лейкофан-мелинофан-эвдидимитовых руд Ермаковского F-Be месторождения (Западное Забайкалье) // Геология и геофизика. 2018. № 8. С. 1271–1291.
  6. Дамдинов Б.Б., Сук Н.И., Котельников А.Р. и др. Экспериментальные исследования растворимости фенакита в щелочно-гранитных расплавах // Докл. АН. 2021. Т. 498. № 2. С. 146–151.
  7. Ишков Ю.М., Рейф Ф.Г. Лазерно-cпектральный анализ включений рудоноcных флюидов в минералах. Новоcибирcк: Наука, 1990. 93 с.
  8. Котельникова З.А., Котельников А.Р. Na-F-содержащие флюиды: экспериментальное изучение при 500–800°С и Р = 2000 бар методом синтетических флюидных включений в кварце // Геохимия. 2008. № 1. С. 54–68.
  9. Котельников А.Р., Сук Н.И., Котельникова З.А. и др. Жидкостная несмесимость во флюидно-магматических системах (экспериментальное исследование) // Петрология. 2019. Т. 27. № 2. С. 206–224.
  10. Куприянова И.И., Шпанов Е.П. Бериллиевые месторождения России. М.: ГЕОС, 2011. 353 с.
  11. Лыхин Д.А., Ярмолюк В.В. Западно-Забайкальская бериллиевая провинция: месторождения, рудоносный магматизм, источники вещества. М.: ГЕОС, 2015. 256 с.
  12. Прокофьев В.Ю, Перетяжко И.С., Смирнов С.З. и др. Бор и борные кислоты в эндогенных рудообразующих флюидах. М.: Изд-во «Пасьва», 2003. 192 с.
  13. Рейф Ф.Г. Щелочные граниты и бериллиевое (фенакит-бертрандитовое) оруденение на примере Оротского и Ермаковского месторождений // Геохимия. 2008. № 3. С. 243–263.
  14. Рейф Ф.Г., Ишков Ю.М. Ве-носные сульфатно-фторидные рассолы – продукт дистилляции остаточных пегматитов щелочно-гранитной интрузии (Ермаковское F-Be месторождение, Забайкалье) // Геохимия. 1999. № 10. С. 1096–1111.
  15. Рейф Ф.Г., Ишков Ю.М. Несмесимые фазы гетерогенного магматического флюида, их рудная специализация и раздельная миграция при формировании Ермаковского F-Be месторождения // Докл. АН. 2003. Т. 390. № 3. С. 1–3.
  16. Сук Н.И., Дамдинов Б.Б., Котельников А.Р. и др. Растворимость фенакита в алюмосиликатных расплавах // Тр. Всероссийского ежегодного семинара по экспериментальной минералогии, петрологии и геохимии (ВЕСЭМПГ-2024). М.: ГЕОХИ РАН, 2024. С. 92–96.
  17. Шаповалов Ю.Б., Котельников А.Р., Сук Н.И. и др. Жидкостная несмесимость и проблемы рудогенеза (по экспериментальным данным) // Петрология. 2019. Т. 27. № 5. С. 577–597.
  18. Barton M.D., Young S. Non-pegmatitic deposits of Beryllium: Mineralogy, geology, phase equilibria and origin // Reviews in Mineralogy and Geochemistry. 2002. V. 50. № 1. P. 591–692.
  19. Evensen J.M., London D., Wendlandt R.F. Solubility and stability of beryl in granitic melts // American Mineralogist. 1999. V. 84. P. 733–745.
  20. Grew E.S. Mineralogy, petrology and geochemistry of Beryllium: An introduction and list of Beryllium minerals // Reviews in Mineralogy and Geochemistry. 2002. V. 50. № 1. P. 1–76.
  21. Griffin W.L., Powell W.J., Pearson N.J., O'Reilly S.Y. Laser Ablation ICP-MS in the Earth Sciences // Ed. P.J. Sylvester. Mineralogical Аssociation of Canada Short Сourse Series. 2008. V. 40. P. 204–207.
  22. London D., Evensen J.M. Beryllium in Silicic magmas and origin of beryl-bearing pegmatites // Reviews in Mineralogy and Geochemistry. 2002. V. 50. № 1. P. 445–486.
  23. London D., Hervig R.L., Morgan G.B. Melt-vapor solubilities and elements; partitioning in peraluminous granite-pegmatite systems: Experimental results with Macusani glass at 200 MPa // Contributions to Mineralogy and Petrology. 1988. V. 99. P. 360–373.
  24. Reyf F.G. Direct evolution of W-rich brines from crystallizing melt within the Mariktikan granite pluton, west Transbaikalia // Mineralium Deposita. 1997. V. 32. Р. 475–490.
  25. Reyf F.G. Immiscible phases of magmatic fluid and their relation to Be and Mo mineralization at the Yermakovka F-Be deposit, Transbaikalia, Russia // Chemical Geology. 2004. V. 210. P. 49–71.
  26. Suk N.I., Damdinov B.B., Kotelnikov A.R. et al. Solubility of phenakite in aluminosilicate melts // Experiment in GeoSciences. 2024. V. 30. № 1. P. 163–165.
  27. Wood S.A. Theoretical prediction of speciation and solubility of beryllium in hydrothermal solutions to 300°C at saturated vapor pressure: Application to bertrandite/phenakite deposits // Ore Geology Reviews. 1992. V. 7. P. 249–278.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».