Карбонатизация серпентинитов Срединно-Атлантического Хребта: 2. Эволюция химического и изотопного (δ¹⁸O, δ¹³С, Rb, Sr, Sm, Nd) составов при эксгумации абиссальных перидотитов
- Авторы: Краснова Е.А.1,2, Силантьев С.А.1, Шабыкова В.В.1, Грязнова А.С.1
-
Учреждения:
- Институт геохимии и аналитической химии им. В.И. Вернадского РАН
- Московский государственный университет им. М.В. Ломоносова
- Выпуск: Том 33, № 1 (2025)
- Страницы: 27–44
- Раздел: Статьи
- URL: https://journal-vniispk.ru/0869-5903/article/view/288606
- DOI: https://doi.org/10.31857/S0869590325010028
- EDN: https://elibrary.ru/vdyouv
- ID: 288606
Цитировать
Аннотация
Формирование карбонатных минералов в океанической коре происходит в ходе взаимодействия CO₂ с силикатными минералами ультраосновных и основных пород. Процесс карбонатизации приводит к формированию многочисленных жил, заполнению интерстиций в матрице пород и частично и/или полностью карбонатизированных пород, слагающих субстрат медленно-спрединговых срединно-океанических хребтов и участвующих в строении офиолитовых комплексов. В работе (Силантьев и др., 2023) была представлена концептуальная модель основных этапов формирования карбонатизированных серпентинитов различных сегментов Срединно-Атлантического хребта. В рамках текущего исследования мы рассмотрели данные о вариациях изотопного состава (δ¹⁸O, δ¹³C, Sr, Nd) в исследуемых ранее карбонатизированных серпентинитах, что привело к дополнительным выводам о последовательности событий преобразования ультраосновных пород, включенных во внутренние океанические комплексы медленно-спрединговых срединно-океанических хребтов. Изотопные характеристики углерода и кислорода, полученные в результате нашего исследования, хорошо соответствуют результатам предыдущих исследований и позволяют на качественном уровне оценивать длительность и пространственное положение в разрезе океанической коры взаимодействия морского флюида с серпентинитами различных сегментов Срединно-Атлантического хребта. Выделенные ранее группы перидотитов по минеральным и петрографическим признакам хорошо согласуются с параметрами соотношения или согласуются со значениями вода/порода, рассчитанными с помощью Sr-Nd изотопной систематики, и отражают последовательность этапов карбонатизации ультраосновного субстрата океанической коры и длительность его пребывания на поверхности океанического ложа. Результаты проведенного исследования демонстрируют, что внутренние океанические комплексы, содержащие исследуемые породы, были выведены к поверхности океанического дна в различные временные периоды.
Полный текст

Об авторах
Е. А. Краснова
Институт геохимии и аналитической химии им. В.И. Вернадского РАН; Московский государственный университет им. М.В. Ломоносова
Автор, ответственный за переписку.
Email: e.krasnova@oilmsu.ru
Россия, Москва; Москва
С. А. Силантьев
Институт геохимии и аналитической химии им. В.И. Вернадского РАН
Email: e.krasnova@oilmsu.ru
Россия, Москва
В. В. Шабыкова
Институт геохимии и аналитической химии им. В.И. Вернадского РАН
Email: e.krasnova@oilmsu.ru
Россия, Москва
А. С. Грязнова
Институт геохимии и аналитической химии им. В.И. Вернадского РАН
Email: e.krasnova@oilmsu.ru
Россия, Москва
Список литературы
- Дубинина Е.О. Стабильные изотопы легких элементов в процессах контаминации и взаимодействия флюид–порода. Автореф.… докт. геол.-мин. наук. М.: ИГЕМ РАН, 2013.
- Дубинина Е.О., Чернышев И.В., Бортников Н.С. и др. Изотопно-геохимические характеристики гидротермального поля Лост Сити // Геохимия. 2007. № 11. С. 1223–1236.
- Дубинина Е.О., Бортников Н.С., Силантьев С.А. Отношение флюид/порода в процессах серпентинизации океанических ультраосновных пород, вмещающих гидротермальное поле Лост Сити, 30 c.ш., САХ // Петрология. 2015. Т. 23. № 6. С. 589–606. https://doi.org/
- Дубинина Е.О., Крамчанинов А.Ю., Силантьев С.А., Бортников Н.С. Влияние скорости осаждения на изотопный состав (δ¹⁸О, δ¹³Cи δ88Sr) карбонатов построек поля Лост Сити (Срединно-Атлантический хребет, 30 с.ш.) // Петрология. 2020. Т. 28. № 4. С. 413–430. https://doi.org/
- Силантьев С.А. Вариации геохимических и изотопных характеристик реститовых перидотитов вдоль простирания Срединно-Атлантического хребта как отражение природы мантийных источников магматизма // Петрология. 2003. Т. 11. № 4. С. 339–362.
- Силантьев С.А., Мироненко М.В., Новоселов А.А. Гидротермальные системы в перидотитовом субстрате медленно-спрединговых хребтов. Моделирование фазовых превращений и баланса вещества: Нисходящая ветвь // Петрология. 2009. Т. 17. № 2. С. 154–174.
- Силантьев С. А., Бортников Н.С., Шатагин К.Н. и др. Перидотит-базальтовая ассоциация САХ на 19°42ʹ–19°59ʹ с. ш.: оценка условий петрогенезиса и баланса вещества при гидротермальном преобразовании океанической коры // Петрология. 2015. Т. 23. № 1. С. 3–25. https://doi.org/ 10.7868/S0869590315010057
- Силантьев С.А., Кубракова И.В., Тютюнник О.А. Характер распределения сидерофильных и халькофильных элементов в серпентинитах океанической литосферы как отражение магматической и внутрикоровой эволюции мантийного субстрата // Геохимия. 2016. № 12. С. 1055–1075. https://doi.org/
- Силантьев С.А., Краснова Е.А., Бадюков Д.Д. и др. Карбонатизация серпентинитов Срединно-Атлантического хребта: 1. Геохимические тренды и минеральные ассоциации // Петрология. 2023. Т. 31. № 2. С. 153–181. https://doi.org/
- Alt J.C. Subseafloor processes in mid-ocean ridge hydrothermal systems // Ed. S.E. Humphris et al. Seafloor Hydrothermal Systems, Physical, Chemical, and Biological Interactions. Geophys. Monogr. AGU, Washington, D.C., 1995. V. 91. Р. 85–114. doi.org/10.1029/GM091p0085
- Alt J.C. Alteration of the upper oceanic crust: mineralogy, chemistry and processes // Eds. E.E. Davis, H. Elderfield. Hydrogeology of the Oceanic Lithosphere, Cambridge Univ. Press, United Kingdom, 2004. P. 495–533.
- Alt J.C., Bach W. Oxygen isotope composition of a section of lower oceanic crust, ODP Hole 735B // Geochem. Geophys. Geosyst. 2006. V. 7. № 12. G12008. https://doi.org/10.1029/2006GC001385.
- Alt J.C., Shanks W.C. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling // Geochim. Cosmochim. Acta. 2003. V. 67. № 4. P. 641–653. https://doi.org/10.1016/S0016-7037(02)01142-0
- Alt J.C., Teagle D.A.H. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801 // Chem. Geol. 2003. V. 201. № 3–4. P. 191–211. https://doi.org/10.1016/S0009-2541(03)00201-8
- Andreani M., Luquot L., Gouze P. et al. Experimental study of carbon sequestration reactions controlled by the percolation of CO2–rich brine through peridotites // Environ. Sci. Technol. 2009. V. 43. № 4. P. 1226–1231. https://doi.org/10.1021/es8018429
- Arai S., Ishimaru S., Mizukami T. Methane and propane micro-inclusions in olivine in titanoclinohumite-bearing dunites from the Sanbagawa high-P metamorphic belt, Japan: Hydrocarbon activity in a subduction zone and Ti mobility // Earth Planet. Sci. Lett. 2012. V. 353–354. P. 1–11. https://doi.org/10.1016/j.epsl.2012.07.043
- Bach W., Alt J.C., Niu Y. et al. The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176) // Geochim. Cosmochim. Acta. 2001. V. 65. № 19. P. 3267–3287. https://doi.org/10.1016/S0016-7037(01)00677-9
- Beinlich A., John T., Vrijmoed J.C. et al. Instantaneous rock transformations in the deep crust driven by reactive fluid flow // Nat. Geosci. 2020. V. 13. № 4. P. 307–311. https://doi.org/10.1038/s41561-020-0554-9
- Bickle M.J., Teagle D.A.H. Strontium alteration in the Troodos ophiolite: implications for fluid fluxes and geochemical transport in mid-ocean ridge hydrothermal systems // Earth Planet. Sci. Lett. 1992. V. 113. № 1–2. P. 219–237. https://doi.org/10.1016/0012-821X(92)90221-G
- Bonatti E., Lawrence J.R., Hamlyn P.R., Breger D. Aragonite from deep sea ultramafic rocks // Geochim. Cosmochim. Acta. 1980. V. 44. № 8. P. 1207–1214. https://doi.org/10.1016/0016-7037(80)90074-5
- Cannat M., Fontaine F., Escartín J. Serpentinization and associated hydrogen and methane fluxes at slow-spreading ridges // Diversity of hydrothermal systems on slow spreading ocean ridges. 2010. V. 188. P. 241–264. https://doi.org/10.1029/2008GM000760
- Carpenter S.J., Lohmann K.C. Sr/Mg ratios of modern marine calcite: Empirical indicators of ocean chemistry and precipitation rate // Geochim. Cosmochim. Acta. 1992. V. 56. P. 1837–1849. https://doi.org/10.1016/0016-7037(92)90314-9
- Charlou J.L., Donval J.P., Fouquet Y. et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (3614ʹN, MAR) // Chem. Geol. 2002. V. 191. № 4. P. 345–359. https://doi.org/10.1016/S0009-2541(02)00134-1
- Delacour A., Fruh-Green G.I., Bernasconi S.M., Kelley D.S. Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30N, MAR) // Geochim. Cosmochim. Acta. 2008. V. 72. № . P. 3681–3702. https://doi.org/10.1016/j.gca.2008.04.039
- Dietzel M., Jianwu T., Leis A., Köhler S.J. Oxygen isotopic fractionation during inorganic calcite precipitation — Effects of temperature, precipitation rate and pH // Chem. Geol. 2009. V. 268. № 1–2. P. 107–115. https://doi.org/10.1016/j.gca.2008.04.039
- Escartín J., Smith D. K., Cann J. R. et al. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere // Nature. 2008. V. 455. P. 790–794. https://doi.org/10.1038/nature07333
- Frost R.B., Beard J.S. On silica activity and serpentinization // J. Petrol. 2007. V. 48. № 7. P. 1351–1368. https://doi.org/10.1093/petrology/egm021
- Früh-Green G.L., Connolly J.A.D., Plas A. et al. Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity // The Subseafloor Вiosphere at Mid-Оcean Ridges. 2004. P. 119–136. https://doi.org/10.1029/144GM08
- Früh-Green G.L., Kelley D.S., Bernasconi S.M. et al. 30.000 years of hydrothermal activity at the Lost City vent field // Science. 2003. V. 301. № 5632. P. 495–498. https://doi.org/10.1126/science.1085582
- Gao Y., Hoefs J., Przybilla R., Snow J.E. A complete oxygen isotope profile through the lower oceanic crust, ODP Hole 735B // Chem. Geol. 2006. V. 233. № 3–4. P. 217–234. https://doi.org/10.1016/j.chemgeo.2006.03.005
- Gillis K.M., Coogan L.A., Pedersen R. Strontium isotope constraints on fluid flow in the upper oceanic crust at the East Pacific Rise // Earth Planet. Sci. Lett. 2005. V. 232. № 1–2. P. 83–94. https://doi.org/10.1016/j.epsl.2005.01.008
- Halls C., Zhao R. Listvenite and related rocks: Perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland // Mineral. Deposita. 1995. V. 30. P. 303–313. https://doi.org/10.1007/BF00196366
- Hart R. Chemical exchange between seawater and deep ocean basalts // Earth Planet. Sci. Lett. 1970. V. 9. № 3. P. 269–279. https://doi.org/10.1016/0012-821X(70)90037-3
- Hart S.R., Blusztajn J.S., Dick H.J.B. et al. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros // Geochim. Cosmochim. Acta. 1999. V. 63. № 23–24. P. 4059–4080. https://doi.org/10.1016/S0016-7037(99)00309-9
- Hess J., Bender M., Schilling J.G. Assessing seawater/basalt exchange of strontium isotopes in hydrothermal processes on the flanks of mid-ocean ridges // Earth Planet. Sci. Lett. 1991. V. 103. № 1–3. P. 133–142. https://doi.org/10.1016/0012-821X(91)90155-B
- Hövelmann J., Austrheim H., Beinlich A., Anne Munz I. Experimental study of the carbonation of partially serpentinized and weathered peridotites // Geochim. Cosmochim. Acta. 2011. V. 75. № 22. P. 6760–6779. https://doi.org/10.1016/j.gca.2011.08.032
- Jacobsen S.B., Wasserburg G.J. Sm-Nd isotopic evolution of chondrites // Earth Planet. Sci. Lett. 1980. V. 50. № 1. P. 139–155. https://doi.org/10.1016/0012-821X(80)90125-9
- Kempton P.D., Fitton J.G., Hawkesworth C.J., Ormerod D.S. Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the southwestern United States // J. Geophys. Res.: Solid Earth. 1991. V. 96. № B8. P. 13713–13735. https://doi.org/10.1029/91JB00373
- Kelemen P.B., Matter J. In situ carbonation of peridotite for CO2 storage // PNAS. 2008. V. 105. № 45. P. 17295–17300. https://doi.org/10.1073/pnas.0805794105
- Kellermeier M., Glaab F., Klein R. et al. The effect of silica on polymorphic precipitation of calcium carbonate: an on-line energy-dispersive X-ray diffraction (EDXRD) study // Nanoscale. 2013. V. 5. № 15. P. 7054–7065. https://doi.org/10.1039/c3nr00301a
- Kelley D.S., Früh-Green G.L. Volatile lines of descent in submarine plutonic environments: Insights from stable isotope and fluid inclusion analyses // Geochim. Cosmochim. Acta. 2001. V. 65. № 19. P. 3325–3346. https://doi.org/10.1016/S0016-7037(01)00667-6
- Kelley D.S., Karson J.A., Früh-Green G.L. et al. A serpentinite-hosted ecosystem: The Lost City hydrothermal field // Science. 2005. V. 307. № 5714. P. 1428–1434. https://doi.org/10.1126/science.1102556
- Kim S.T., O’Neil J.R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates // Geochim. Cosmochim. Acta. 1997. V. 61. № 16. P. 3461–3475. https://doi.org/10.1016/S0016-7037(97)00169-5
- Lacinska A.M., Styles M.T., Bateman K. et al. An experimental study of the carbonation of serpentinite and partially serpentinised peridotites // Front. Earth Sci. 2017. https://doi.org/10.3389/feart.2017.00037
- Lang S.Q., Früh-Green G.L., Bernasconi S.M. et al. Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted system // Geochim. Cosmochim. Acta. 2012. V. 92. P. 82–99. https://doi.org/10.1016/j.gca.2012.06.006
- Lister C.R.B. On the thermal balance of a mid-ocean ridge // Geophys. J. R. Astron. Soc. 1972. V. 26. № 5. P. 515–535. https://doi.org/10.1111/j.1365-246X.1972.tb05766.x
- Ludwig K.A., Kelley D.S., Butterfield D.A. et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field // Geochim. Cosmochim. Acta. 2006. V. 70. № 14. P. 3625–3645. https://doi.org/10.1016/j.gca.2006.04.016
- Lumsden D.N., Morrison J.W., Lloyd R.V. The role of iron and Mg/Ca ratio in dolomite synthesis at 192C // J. Geol. 1995. V. 103. № 1. P. 51–61. https://doi.org/10.1086/629721
- Malvoisin B. Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical // Earth Planet. Sci. Lett. 2015. V. 430. P. 75–85. https://doi.org/10.1016/j.epsl.2015.07.043
- McCollom T.M., Bach W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks // Geochim. Cosmochim. Acta. 2009. V. 73. № 3. P. 856–875 https://doi.org/10.1016/j.gca.2008.10.032
- McCollom T.M., Seewald J.S. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions // Earth Planet. Sci. Lett. 2006. V. 243. № 1–2. P. 74–84. https://doi.org/10.1016/j.epsl.2006.01.027
- McCrea J.M. On the isotopic chemistry of carbonates and a paleotemperature scale // J. Chemic. Phys. 1950. V. 18. № 6. P. 849–857. https://doi.org/10.1063/1.1747785
- Michard A., Albarède F., Minster J.F., Charlou J.-L. Rare-earth elements and uranium in high temperature solutions from the East Pacific Rise hydrothermal vent field (13N) // Nature. 1983 V. 303. P. 795–797. https://doi.org/10.1038/303795a0
- Milliken K.L., Morgan J.K. Chemical evidence for near seafloor precipitation of calcite in serpentinites (Site 897) and serpentinite breccias (Site 899), Iberia Abyssal Plane // Eds. R.B. Whitmarsh, D.S. Sawyer, A. Klaus, D.G. Masson. Proceedings of the Ocean Drilling Program, Scientific Results. 1996. V. 149. P. 553–558.
- Palandri J.L., Reed M.H. Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation // Geochim. Cosmochim. Acta. 2004. V. 68. № 5. P. 1115–1133. https://doi.org/10.1016/j.gca.2003.08.006
- Peuble S., Andreani M., Godard M. et al. Carbonate mineralization in percolated olivine aggregates: Linking effects of crystallographic orientation and fluid flow // Amer. Mineral. 2015. V. 100. № 2–3. P. 474–482. https://doi.org/10.2138/am-2015-4913
- Picazo S., Malvoisin B., Baumgartner L., Bouvier A.S. Low temperature serpentinite replacement by carbonates during seawater influx in the Newfoundland Margin // Minerals. 2020. V. 10. № 2. P. 184. https://doi.org/10.3390/min10020184
- Proskurowski G., Lilley M.D., Seewald J.S. et al. Abiogenic hydrocarbon production at Lost City hydrothermal field // Science. 2008. V. 319. P. 604–607. https://doi.org/10.1126/ science.1151194
- Schwarzenbach E.M., Früh-Green G.L., Bernasconi S.M. et al. Serpentinization and carbon sequestration: A study of two ancient peridotite-hosted hydrothermal systems // Chem. Geol. 2013. V. 351. P. 115–133. https://doi.org/10.1016/j.chemgeo.2013.05.016
- Shanks W.C., Böhlke J.K., Seal R.R. Stable isotopes in mid-ocean ridge hydrothermal systems: Interactions between fluids, minerals, and organisms // Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. 1995. V. 70. P. 194–221. doi: 10.1515/9781501508745-011
- Snow J.E., Dick H.J.B. Pervasive magnesium loss by marine weathering of peridotite // Geochim. Cosmochim. Acta. 1995. V. 59. № 20. P. 4219–4235. https://doi.org/10.1016/0016-7037(95)00239-V
- Stakes D., Mével C., Cannat M., Chaput T. Metamorphic stratigraphy of Hole 735B // Proc. Ocean Drill. Program Sci. Results. 1991. V. 118. P. 153–180.
- Sulpis O., Agrawal1 P., Wolthers M. et al. Aragonite dissolution protects calcite at the seafloor // Nature Communicat. 2022. V. 13. P. 1104. https://doi.org/10.1038/s41467-022-28711-z
- Ternieten L., Früh-Green G.L., Bernasconi S.M. Carbonate mineralogy in mantle peridotites of the Atlantis Massif (IODP Expedition 357) // J. Geophys. Res.: Solid Earth. 2021. V. 126. e2021JB021885 https://doi.org/10.3929/ethz-b-000522609
- Torres M.E., Mix A.C., Rugh W.D. Precise δ¹³C analysis of dissolved inorganic carbon in natural waters using automated headspace sampling and continuous-flow mass spectrometry // Limnol. Oceanogr. Methods. 2005. V. 3. № 8. P. 349–360. https://doi.org/10.4319/lom.2005.3.349
- Ulrich M., Muñoz M., Guillot S. et al. Dissolution-precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite // Contrib. Mineral. Petrol. 2014. V. 167. № 1 P. 1—19. https://doi.org/10.1007/s00410-013-0952-8
- Wheat C.G., Mottl M.J. Geochemical fluxes through mid-ocean ridge flanks // Hydrogeology of the Oceanic Lithosphere. 2004. P. 627–658.
- Yang T., Jiang S.Y. A new method to determine carbon isotopic composition of dissolved inorganic carbon in seawater and pore waters by CO2-water equilibrium // Rapid Commun. Mass Spectrom. 2012. V. 26. P. 805–810. https://doi.org/10.1002/rcm.6164
Дополнительные файлы
