Partial Melting Features in Mantle Xenoliths of Spinel Lherzolites of Zhokhov Island, De-Long Archipelago, Eastern Arctic
- 作者: Silantyev S.A.1, Badyukov D.D.1, Akhmetshin A.G.1, Krasnova E.A.1,2
-
隶属关系:
- Vernadsky Institute of RAS
- Moscow Lomonosov State University
- 期: 卷 33, 编号 2 (2025)
- 页面: 3-19
- 栏目: Articles
- URL: https://journal-vniispk.ru/0869-5903/article/view/290040
- DOI: https://doi.org/10.31857/S0869590325020018
- EDN: https://elibrary.ru/uhojho
- ID: 290040
如何引用文章
详细
Zhokhov Island beongs to the De-Long Archipelago located in the Eastern sector of the Russian continental shelf within the Arctic Basin. The Island is a young volcanic center and is composed of lava flowsalkaline olivine-porphyry basalts and subordanate limburgites. The study was aimed at identifying possible regional and geodynamic factors influencing the specifics of the partial melting process and mineral transformations in mantle xenoliths of Zhokhov Island. Five xenoliths selected from samples of alkali basalts on Zhokhov Island were studied using a scanning electron microscope. The data obtained allowed us to conclude that the formation of high-sodium glasses in the mantle xenoliths of Zhokhov Island is associated with the interaction between Spinel Lherzolites and parental for host Olivine Basalts magmatic melt. At the same time, high-potassium glasses inside mantle xenoliths were formed in situ during the melting of a primary potassium-containing pgase which may have been Phlogopite. The formation of two distinct contrasting in composition zones of recrystallization in contact between mantle xenoliths and host basalt is due to the evolution of composition of the alkaline silicate melt carried xenoliths. Signs of activation of young intraplate magmatism facilitating the transport of fragments of metasomatized shallow mantle are established in a large area of the Arctic Basin.
全文:

作者简介
S. Silantyev
Vernadsky Institute of RAS
编辑信件的主要联系方式.
Email: silantyev@geokhi.ru
俄罗斯联邦, Moscow
D. Badyukov
Vernadsky Institute of RAS
Email: silantyev@geokhi.ru
俄罗斯联邦, Moscow
A. Akhmetshin
Vernadsky Institute of RAS
Email: silantyev@geokhi.ru
俄罗斯联邦, Moscow
E. Krasnova
Vernadsky Institute of RAS; Moscow Lomonosov State University
Email: silantyev@geokhi.ru
Geosciences Department
俄罗斯联邦, Moscow; Moscow参考
- Ашихмин Д.С., Скублов С.Г. Неоднородность состава ксенолитов мантийных перидотитов из щелочных базальтов вулкана Сверре, архипелаг Шпицберген // Зап. Горного ин-та. 2019. Т. 239. С. 483–491.
- Ашихмин Д.С., Скублов С.Г., Мельник А.Е. и др. Геохимия породообразующих минералов в мантийных ксенолитах из базальтов вулкана Сверре, архипелаг Шпицберген // Геохимия. 2018. № 8. С. 820–828.
- Богдановский О.Г., Силантьев С.А., Карпенко С.Ф. и др. Древние мантийные ксенолиты в молодых вулканических породах острова Жохова, архипелаг Де-Лонга // Докл. АН СССР. 1993. Т. 330. № 6. С. 750–753.
- Лаврентьев Ю.Г., Карманов Н.С., Усова Л.В. Электронно-зондовое определение состава минералов: микроанализатор или сканирующий электронный микроскоп? // Геология и геофизика. 2015. Т. 56. № 8. С. 1473—1482.
- Никитина Л.П., Марин Ю.Б., Сироткин А.Н. и др. Петрография и минералогия мантийных ксенолитов в кайнозойских щелочных базальтах о. Жохова (арх. Новосибирские острова) как отражение этапов эволюции мантии // Минералого-геохимические исследования для решения проблем петро- и рудогенеза, выявления новых видов минерального сырья и их рационального использования и Федоровская сессия. Материалы конференции. Годичное собрание РМО. Санкт-Петербург, 10–12 октября. 2023. С. 48–50.
- Савостин Л.А., Силантьев С.А., Богдановский О.Г. Новые данные о вулканизме о-ва Жохова, архипелаг Де-Лонга, Арктический бассейн // Докл. АН СССР. 1988. Т. 302. № 6. С. 1443–1447.
- Силантьев С.А., Богдановский О.Г., Савостин Л.А., Кононкова Н.Н., Магматизм архипелага Де-Лонга (Восточная Арктика): петрология и петрохимия эффузивных пород и ассоциирующих с ними ксенолитов (острова Жохова и Вилькицкого) // Геохимия. 1991. № 2. С. 267–277.
- Akinin V.V., Gottlieb E.S., Miller E.I. et al. Age and composition of basement beneath the De-Long archipelago, Arctic Russia, based on zircon U-Pb geochronology and O-Hf isotopic systematics from crustal xenoliths in basalts of Zhokhov Island // Arktos. 2015. V. 1. № 9. doi: 10.1007/s41063- 015-0016-6
- Aliani P., Ntaflos T., Bjerg E. Origin of melt pockets in mantle xenoliths from southern Patagonia, Argentina // J. South Amer. Earth Sci. 2009. V. 28. P. 419–428.
- Arai S., Abe N. Reaction of orthopyroxene in peridotite xenoliths with alkali-basalt melt and its implication for genesis of alpine-type chromitite // Amer. Mineral. 1995. V. 80. P. 1041–1047.
- Auer A., Brenna M., Scott J.M. Influence of host magma alkalinity on trachytic melts formed during incongruent orthopyroxene dissolution in mantle xenoliths // New Zealand J. Geol. Geophys. 2020. V. 63. № 4. P. 547–561.
- Coltorti M., Beccaluva L., Bonadiman C. et al. Glasses in mantle xenoliths as geochemical indicators of metasomatic agents // Earth Planet. Scie. Lett. 2000. V. 183. P. 303–320.
- Comin-Chiaramonti P., Lucassen F., Girardi V.A.A. et al. Lavas and their mantle xenoliths from intracratonic Eastern Paraguay (South America Platform) and Andean Domain, NW-Argentina: a comparative review // Mineral. Petrol. 2009. doi: 10.1007/s00710-009-0061-6
- Cox K.G., Bell J.D., Pankhurst R.J. The Interpretation of igneous rocks. London: G. Allen & Unwin, 1979. 450 p. http://dx.doi.org/10.1007/978-94-017-3373-1
- Dick H.J.B., Lin J., Shouten H. An ultraslow-spreading class of ocean ridge // Nature. 2003. V. 426. P. 405–412.
- Gaina C., Medvedev S., Torsvik T.H. et al. 4D Arctic: A glimpse into the structure and evolution of the arctic in the light of new geophysical maps, plate tectonics and tomographic models // Surv. Geophys. 2014. V. 35. P. 1095–1122. doi: 10.1007/s10712-013-9254-y
- Ionov D.A. Trace element composition of mantlederived carbonates and coexisting phases in peridotite xenoliths from alkali basalts // J. Petrol. 1998. V. 39. № 11–12. P. 1931–1941.
- Ionov D.A., Mukasa S.B., Bodinier J.-L. Sr-Nd-Pb isotopic compositions of peridotite xenoliths from Spitsbergen: numerical modelling indicates Sr-Nd decoupling in the mantle by melt percolation metasomatism // J. Petrol. 2002. V. 43. № 12. P. 2261–2278.
- Ionov D.A., Prikhodko V.S., Bodinier J.-L. et al. Lithospheric mantle beneath the south-eastern Siberian craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik // Contrib. Mineral. Petrol. 2005. V. 149. P. 647–665.
- Kovacs I., Hidas K., Hermann J. et al. Fluid induced melting in mantle xenoliths and some implications for the continental lithospheric mantle from the Minusinsk Region (Khakasia, southern Siberia) // Geol. Carpathica. 2007. V. 58. № 3. P. 211–228.
- Leeman W.P., Ertan I.E. Diverse invasive melts in Cascadia mantle xenoliths: No subduction connection // Goldschmidt Conference. Toulouse. 1998. P. 875–876.
- Litasov K.D., Simonov V.A., Kovyazin S.V. et al. Interaction between mantle xenoliths and deep-seated melts: Results of etudy of melt inclusions amd interstitial glasses in peridotites from basanites of the Vitim Volcanic field // Russ. Geol. Geophys. 2003. V. 44. № 5. P. 417–431.
- Lustrino M., Melluso L., Morra V. Origin of glass and its relationships with phlogopite in mantle xenoliths from central Sardinia (Italy) // Per. Mineral. 1999. V. 68. № 1. P. 13–42.
- Miller C., Zanetti A., Thöni M. et al. Mafic and silica-rich glasses in mantle xenoliths from Wau-en-Namus, Libya: Textural and geochemical evidence for peridotite–melt reactions // Lithos. 2012. V. 128–131. P. 11–26.
- Pedersen R.B., Rapp H.T., Thorseth I.H. et al. Discovery of a black smocker vent and vent fauna at the Arctic Mid-Ocean Ridge // Nature Communications. 2010. 1:126. doi: 10.1038/ncomms1124. www.nature.com/natur-ecommunications
- Silantyev S. Neogene withinplate magmatism of De-Long Islands: Footprint of young mantle plume of the Eastern Arctic Basin // 7-th International Science Conference. Large Igneous Province. Tomsk, Russia. abstract Vol. 2019. P. 128–129.
- Silantyev S.A., Bogdanovskii O.G., Fedorov P.I. et al. Intraplate magmatism of the De-Long Islands: A response to the propagation of the ultraslow-spreading Gakkel Ridge into the passive continental margin in the Laptev Sea // Russ. J. Erath Sci. 2004. V. 6. № 3. P. 1–31.
- Shaw C.S. Dissolution of orthopyroxene in basanitic magma between 0.4 and 2 GPa: further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths // Contrib. Mineral. Petrol. 1999. V. 135. № 2–3. P. 114–132.
- Skjelkvale B.-L., Amundsen H.E.F., O’Reilly S.Y. et al. A primitive alkali basaltic stratovolcano and associated eruptive centers, Northwestern Spitsbergen: Volcanology and tectonic significance // J. Volcanology and Gepthermal Res. 1989. V. 37. P. 1–19.
- Su B.-X., Zhang H.-F., Sakyi P.A. et al. The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central China // Contrib. Mineral. Petrol. 2011. V. 161. P. 465–482.
- Treiman A.H. Eruption age of the Sverrefjellet volcano, Spitsbergen Island, Norway // Polar Res. 2012. V. 31. doi: 10.3402/polar.v31i0.17320
- Wang Y., Baofu Han, Griffin W.L. et al. Post-entrainment mineral-magma interaction in mantle xenoliths from Inner Mongolia, Western North China Craton // J. Earth Sci. 2012. V. 23. № 1. P. 54–76.
- Wulff-Pedersen E., Neumann E.R., Vannucci R. et al. Silicic melts produced by reaction between peridotite and infiltrating basaltic melts: ion probe data on glasses and minerals in veined xenoliths from La Palma, Canary Islands // Contrib. Mineral. Petrol. 1999. V. 137. № 1–2. P. 59—82.
- Yaxley G.M., Kamenetsky V. In situ origin for glass in mantle xenoliths from southeastern Australia: insights from trace element compositions of glasses and metasomatic phases // Earth Planet. Sci. Lett. 1999. V. 172. P. 97–109.
- Yudalevich Z., Vapnik Y. Xenocrysts and megacrysts of alkaline olivine-basalt-basanite-nephelinite association Makhtesh Ramon (Israel): Interaction with carrier magmas and crystallographic transformations // Lithosphere (Russia). 2018. V. 18 (5A). P. 57–77.
补充文件
