Study of Microstructure of the Mammoth Tusk by Scanning Electron Microscopy
- Authors: Petukhova E.S1, Solov'ev T.M1, Isakova T.A1, Botvin G.V1, Chirikov A.A1, Petrov V.V1
-
Affiliations:
- Yakut Scientific Center of the Siberian Branch RAS
- Issue: Vol CLIV, No 3 (2025)
- Pages: 123-136
- Section: ORGANIC MINERALOGY AND BIOMINERALOGY
- URL: https://journal-vniispk.ru/0869-6055/article/view/355265
- DOI: https://doi.org/10.31857/S0869605525030085
- ID: 355265
Cite item
Abstract
This work presents the results of a study of the microstructure of mammoth tusk (MT) samples Mammuthus Primigenius using scanning electron microscopy. Dependence of the tusk tissue strength on the characteristics of the crack formation and mineralization was determined. It was found that MT tissues are characterized by the presence of microcracks, the number of which increases with a decrease in the quality of the substantial. It is shown that the anisotropy of the tusk properties, due to the specific framework mineral-organic structure, decreases with an increase in the number of microcracks. It was revealed that the dentin of the tusks is characterized by an uneven distribution of calcium and magnesium ions, indicating the occurrence of mineralization processes accompanied by the transformation and saturation of tissues with magnesium-containing minerals, which was confirmed by the results of X-ray phase analysis, which showed the presence of newberyite (Mg(PO3OH) · 3H2O) in the sample. The nature of foreign inclusions can also indicate the environment in which the tusk was found before its discovery, or the introduction of mineral particles into the body of the tusk during the life of the animal.
About the authors
E. S Petukhova
Yakut Scientific Center of the Siberian Branch RAS
Email: tatyana_issakova@mail.ru
Yakutsk, Russia
T. M Solov'ev
Yakut Scientific Center of the Siberian Branch RAS
Email: tatyana_issakova@mail.ru
Yakutsk, Russia
T. A Isakova
Yakut Scientific Center of the Siberian Branch RAS
Email: tatyana_issakova@mail.ru
Yakutsk, Russia
G. V Botvin
Yakut Scientific Center of the Siberian Branch RAS
Email: tatyana_issakova@mail.ru
Yakutsk, Russia
A. A Chirikov
Yakut Scientific Center of the Siberian Branch RAS
Email: tatyana_issakova@mail.ru
Yakutsk, Russia
V. V Petrov
Yakut Scientific Center of the Siberian Branch RAS
Author for correspondence.
Email: tatyana_issakova@mail.ru
Yakutsk, Russia
References
- Abelova M. Schreger pattern analysis of Mammuthus primigenius tusk: analytical approach and utility. Bull. Geosci. 2008. Vol. 83. P. 225—232.
- Alberic M., Dean M. N., Gouvrier A., Wagermaier W., Dunlop J. W. C., Staude A., Fratzl P., Reiche I. Relation between the macroscopic pattern of elephant ivory and its three-dimensional micro-tubular network. PloS One. 2017. Vol. 12. N 1.
- Barabasheva E. E., Siremetskaya E. O. Features of biosorption of chemical elements by bone tissue of mammoth tusk and woolly rhinoceros teeth from Pleistocene deposits of the Transbaikal Territory. J. Chita State University. 2010. Vol. 8 (65). P. 85—90 (in Russian).
- Boeskorov G. G., Mashchenko E. N., Plotnikov V. V., Shchelehkova M. V., Protopopov A. V., Solomonov N. G. Adaptation of the woolly mammoth Mammuthus primigenius (Blumenbach, 1799) to habitat conditions in the glacial period. Contemporary Problems of Ecology. 2016. Vol. 9. P. 544—553.
- Vereshelagin N. K., Tikhonov A. N. Study of mammoth tusks. Proc. Zoological Inst. USSR Acad. Sci. 1986. Vol. 149. P. 3—14 (in Russian).
- Daniichenko S. N. Structure and properties of calcium apatites from the point of view of biomineralogy and biomaterial science (review). Vestnik SumDU. Ser. Phys. Math. Mech. 2007. N 2. P. 33—59 (in Russian).
- Zolotarev V. M., Khlopachev G. A. Study of carbonates and molecular water in mammoth tusks from the Yudinovo Paleolithic Site. Optics and Spectroscopy. 2021. Vol. 129. P. 867—880.
- Klimovskaya T. F. Structural and morphological features of the tusks of the woolly mammoth Mammuthus Primigenius: a review of the results and research prospects. Life of the Earth. 2022. Vol. 44. N 4. P. 456—464 (in Russian).
- Order of the Head of the Republic of Sakha (Yakutia) N649-RG dated August 13, 2018 “On approval of the Concept for the development of collection, study, use, processing and sale of paleontological materials of mammoth fauna in the territory of the Republic of Sakha (Yakutia)”. http://docs.cntd.ru/document/550166534
- Smirnov A. N. Fossil mammoth bone: problems of prospects for studying and developing the resource potential in the Russian Arctic. Gercen Harold Russian State Pedagogical University. 2005. N 13. P. 255—264 (in Russian).
- Solov’ev T.M., Petukhova E. S., Botvin G. V., Isakova T. A., Pavlova V. V. Analyzing the composition and structure of mammuthus primigenius tusk by methods of thermogravimetric and X-ray analysis. Inorganic Materials: Appl. Res. 2021. Vol. 12. N 4. P. 1083—1086.
- Solov’ev T.M., Isakova T. A., Pavlova V. V., Botvin G. V., Chirikov A. A., Petrov V. V., Petukhova E. S. Mineral composition and physical and mechanical properties of mammoth tusks of different varieties. Nature Res. Arctic and Sub-Arctic. 2023. Vol. 28. N 3. P. 495—506 (in Russian).
- Abelova M. Schreger pattern analysis of Mammuthus primigenius tusk: analytical approach and utility. Bull. Geosci. 2008. Vol. 83. P. 225—232.
- Alberic M., Dean M. N., Gouvrier A., Wagermaier W., Dunlop J. W. C., Staude A., Fratzl P., Reiche I. Relation between the macroscopic pattern of elephant ivory and its three-dimensional micro-tubular network. PloS One. 2017. Vol. 12. N 1.
- Fadeev I. V., Shvorneva L. I., Barinov S. M., Orlovskii V. P. Synthesis and structure of magnesium-substituted hydroxyapatite. Inorganic Materials. 2003. Vol. 39. P. 947—950.
- Freund A., Eggert G., Kutzke H., Barbier B. On the occurrence of magnesium phosphates on ivory. Studies in Conservation. 2002. Vol. 47. N 3. P. 155—160.
- O’Connor S., Edwards H. G.M., Ali E. An interim investigation of the potential of vibrational spectroscopy for the dating of cultural objects in ivory. ArcheoSciences. 2011. Vol. 35. P. 159—165.
- Palombo M. R., Villa P. Schreger lines as support in the Elephantinae identification. Rome: The World of Elephants. International Congress. 2001. P. 656—660.
- Pfeifer S. J., Hartramph W. L., Kahlke R. D., Muller F. A. Mammoth ivory was the most suitable osseous raw material for the production of Late Pleistocene big game projectile points. Scientific Reports. 2019. Vol. 9. N 1. P. 1—10.
- Sakae T., Oinuma H., Higa M., Kozawa Y. X-ray diffraction and FTIR study on heating effects of dentin from mammoth tusk. J. Oral Biosciences. 2005. Vol. 47. N 1. P. 83—88.
- Schreger B. N.G. Beitrag zur Geschichte der Zahne. Beitrage für die Zergliederungskunst. 1800. Vol. 1. P. 1—7.
- Shen M., Lu Z., Xu Y., He X. Vivianite and its oxidation products in mammoth ivory and their implications to the burial process. ACS Omega. 2021. Vol. 6. N 34. P. 22284—22291.
- Singh R. R., Goyal S. P., Khanna P. P., Mukherjee P. K., Sukumar R. Using morphometric and analytical techniques to characterize elephant ivory. Forensic Science International. 2006. Vol. 162. P. 144—151.
- Sun X., He M., Wu J. Crystallographic characteristics of inorganic mineral in mammoth ivory and ivory. Minerals. 2022. Vol. 12. N 2. P. 117.
- Sun X., He M., Wu J. Study of the preferred orientation of hydroxyapatite in ivory from Zimbabwe and mammoth ivory from Siberia. Crystals. 2021. Vol. 11. N 5. P. 572.
- Trapani J., Fisher D. C. Discriminating proboscidean taxa using features of the Schreger pattern in tusk dentin. J. Archaeological Sci. 2003. Vol. 30. P. 429—438.
- Yin Z., Zhang P., Chen Q., Luo Q., Zheng C., Li Y. A Comparison of modern and fossil ivories using multiple techniques. Gems and Gemology. 2013. Vol. 49. N 1. P. 16—27.
- Zolotarev V. M., Khlopachev G. A. Study of carbonates and molecular water in mammoth tusks from the Yudinovo Paleolithic Site. Optics and Spectroscopy. 2021. Vol. 129. P. 867—880.
Supplementary files


