About theory of hybride TWTO and an amplifire with a complex permittivity

封面

如何引用文章

全文:

详细

The purpose of this work is to construct a nonlinear theory of a hybrid between travelling wave tube (TWT) and an amplifier with a complex permittivity. Methods. The following model is considered: an ion-compensated one-dimensional electron beam penetrates the input travelling wave tube section, then flies into a medium with a complex permittivity, and then enters the output travelling wave tube section. A linear theory of this hybrid is constructed, and its results are compared with the results of the well-known linear theory of travelling wave tube. A nonlinear theory of this hybrid was constructed by a modified wave method, and the results were compared with the nonlinear travelling wave tube theory obtained by the classical Ovcharov–Solntsev’s wave method. In addition, to test the limits of applicability of the obtained results, a stationary nonlinear theory of the hybrid was constructed, obtained using the large particle method. The results of this theory were also compared with the stationary nonlinear travelling wave tube theory constructed using the large particle method. Results and conclusion. Based on the results of the developed theories, it is shown that, under certain parameters, the linear theory and nonlinear theories (both by the modified Ovcharov–Solntsev’s wave method and by the large particle method) make it possible to obtain comparable results both in the case of a classical travelling wave tube and for the hybrid under study. It is shown that under certain parameters, due to the resistive instability, the bunching of electrons can be noticeably improved and, as a result, the gain of the hybrid can exceed the gain in a classical travelling wave tube with the same parameters and the same total length of the device in the linear mode of operation. In the nonlinear mode of operation, the specified hybrid, with optimal environmental parameters, can have significantly higher values of output power and efficiency than travelling wave tube with the same value of the space charge parameter and the Pierce parameter.

作者简介

Aleksandr Funtov

Saratov State University

ORCID iD: 0000-0002-9121-1449
Scopus 作者 ID: 55965777100
ul. Astrakhanskaya, 83, Saratov, 410012, Russia

参考

  1. Duan Z., Shapiro M. A., Schamiloglu E., Behdad N., Gong Y., Booske J. H., Basu B. N., Temkin R. J. Metamaterial-inspired vacuum electron devices and accelerators // IEEE Transactions on Electron Devices. 2019. Vol. 66, no. 1. P. 207–218. doi: 10.1109/TED.2018.2878242.
  2. Rashidi A., Behdad N. Metamaterial-enhanced traveling wave tubes // In: IEEE International Vacuum Electronics Conference (IVEC). 22-24 April 2014, Monterey, CA, USA. New York: IEEE, 2014. P. 199–200. doi: 10.1109/IVEC.2014.6857559.
  3. Ulisse G., Krozer V. W-band traveling wave tube amplifier based on planar slow wave structure // IEEE Electron Device Letters. 2017. Vol. 38, no. 1. P. 126–129. doi: 10.1109/LED.2016.2627602.
  4. Birdsall С. К., Brewer G. R., Haeff A. V. The resistive-wall amplifier // Proceedings of the IRE. 1953. Vol. 41, no. 7. P. 865–875. doi: 10.1109/JRPROC.1953.274425.
  5. Birdsall С. К., Whinnerу J. R. Waves in an electron stream with general admittance walls // J. Appl. Phys. 1953. Vol. 24, no. 3. P. 314–323. doi: 10.1063/1.1721272.
  6. Лопухин В. М., Веденов А. А. Усилитель на поглощении // УФН. 1954. Т. 53, № 1. С. 69–86. doi: 10.3367/UFNr.0053.195405c.0069.
  7. Цейтлин М. Б., Кац А. М. Лампа с бегущей волной. М.: Советское радио, 1964. 308 с.
  8. Rowe T., Behdad N., Booske J. H. Metamaterial-enhanced resistive wall amplifier design using periodically spaced inductive meandered lines // IEEE Transactions on Plasma Science. 2016. Vol. 44, no. 10. P. 2476–2484. doi: 10.1109/TPS.2016.2599144.
  9. Jiang Y., Lei W., Hu P., Song R., Ma G., Chen H., Jin X. Demonstration of a 220-GHz continuous wave traveling wave tube // IEEE Transactions on Electron Devices. 2021. Vol. 68, no. 6. P. 3051–3055. doi: 10.1109/TED.2021.3075922.
  10. Касаткин Л. В. Об усилении волн пространственного заряда при прохождении пучков электронов в средах с индуктивной проводимостью // Радиотехника и электроника. 1961. Т. 6, № 2. С. 267–274.
  11. Овчаров В. Т., Солнцев В. А. Упрощенные нелинейные уравнения лампы бегущей волны // Радиотехника и электроника. 1962. Т. 7, № 11. С. 1931–1940.
  12. Datta S. K., Kumar L. Plasma frequency reduction factor // Defence Science Journal. 2008. Vol. 58, no. 6. P. 768–770. doi: 10.14429/dsj.58.1705.
  13. Branch G. M., Mihran T. G. Plasma frequency reduction factors in electron beams // IRE Transactions on Electron Devices. 1955. Vol. 2, no. 2. P. 3–11. doi: 10.1109/T-ED.1955.14065.
  14. Вайнштейн Л. А., Солнцев В. А. Лекции по сверхвысокочастотной электронике. М.: Советское радио, 1973. 399 с.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».