Collective dynamics of a neural network of excitable and inhibitory populations: oscillations, tristability, chaos

封面

如何引用文章

全文:

详细

The purpose of this work is to study the collective dynamics of a neural network consisting of excitatory and inhibitory populations. The method of reducing the network dynamics to new generation neural mass models is used, and a bifurcation analysis of the model is carried out. As a result the conditions and mechanisms for the emergence of various modes of network collective activity are described, including collective oscillations, multistability of various types, and chaotic collective dynamics. Conclusion. The low-dimensional reduced model is an effective tool for studying the essential patterns of collective dynamics in large-scale neural networks. At the same time, the analysis also allows us to elicit more subtle effects, such as the emergence of synchrony clusters in the network and the shifting effect for the boundaries of the existence of dynamical modes.

作者简介

Sergej Kirillov

Institute of Applied Physics of the Russian Academy of Sciences

ORCID iD: 0000-0002-7731-7423
SPIN 代码: 6266-8147
ul. Ul'yanova, 46, Nizhny Novgorod , 603950, Russia

Alexander Zlobin

Institute of Applied Physics of the Russian Academy of Sciences

ul. Ul'yanova, 46, Nizhny Novgorod , 603950, Russia

Vladimir Klinshov

Lobachevsky State University of Nizhny Novgorod

ORCID iD: 0000-0003-4733-1352
Scopus 作者 ID: 15520684700
Researcher ID: M-6226-2014
603950 Nizhny Novgorod, Gagarin Avenue, 23

参考

  1. Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K. The dynamic brain: From spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 2008;4(8):e1000092. doi: 10.1371/journal.pcbi.1000092.
  2. Schwalger T, Deger M, Gerstner W. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size. PLoS Comput. Biol. 2017;13(4):e1005507. doi: 10.1371/journal.pcbi.1005507.
  3. Coombes S, Byrne A. Next generation neural mass models. In: Corinto F, Torcini A, editors. Nonlinear Dynamics in Computational Neuroscience. PoliTO Springer Series. Cham: Springer; 2019. P. 1–16. doi: 10.1007/978-3-319-71048-8_1.
  4. Montbrio E, Pazo D, Roxin A. Macroscopic description for networks of spiking neurons. Phys. Rev. X. 2015;5(2):021028. doi: 10.1103/PhysRevX.5.021028.
  5. Devalle F, Roxin A, Montbrio E. Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks. PLoS Comput. Biol. 2017;13(12): e1005881. doi: 10.1371/journal.pcbi.1005881.
  6. Bi H, Segneri M, di Volo M, Torcini A. Coexistence of fast and slow gamma oscillations in one population of inhibitory spiking neurons. Phys. Rev. Research. 2020;2(1):013042. DOI: 10.1103/ PhysRevResearch.2.013042.
  7. Byrne A, Brookes MJ, Coombes S. A mean field model for movement induced changes in the beta rhythm. Journal of Computational Neuroscience. 2017;43(2):143–158. doi: 10.1007/s10827- 017-0655-7.
  8. Schmidt H, Avitabile D, Montbrio E, Roxin A. Network mechanisms underlying the role of oscillations in cognitive tasks. PLoS Comput. Biol. 2018;14(9):e1006430. doi: 10.1371/journal.pcbi. 1006430.
  9. Byrne A, Ross J, Nicks R, Coombes S. Mean-field models for EEG/MEG: From oscillations to waves. Brain Topography. 2022;35(1):36–53. doi: 10.1007/s10548-021-00842-4.
  10. Gerster M, Taher H, Skoch A, Hlinka J, Guye M, Bartolomei F, Jirsa V, Zakharova A, Olmi S. Patient-specific network connectivity combined with a next generation neural mass model to test clinical hypothesis of seizure propagation. Frontiers in Systems Neuroscience. 2021;15:675272. doi: 10.3389/fnsys.2021.675272.
  11. Lavanga M, Stumme J, Yalcinkaya BH, Fousek J, Jockwitz C, Sheheitli H, Bittner B, Hashemi M, Petkoski S, Caspers S, Jirsa V. The virtual aging brain: a model-driven explanation for cognitive decline in older subjects. bioRxiv 2022.02.17.480902. doi: 10.1101/2022.02.17.480902.
  12. Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal. 1972;12(1):1–24. doi: 10.1016/S0006-3495(72)86068-5.
  13. van Vreeswijk C, Sompolinsky H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science. 1996;274(5293):1724–1726. doi: 10.1126/science.274.5293.1724.
  14. Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience. 2000;8(3):183–208. doi: 10.1023/A:1008925309027.
  15. Maslennikov OV, Kasatkin DV, Rulkov NF, Nekorkin VI. Emergence of antiphase bursting in two populations of randomly spiking elements. Phys. Rev. E. 2013;88(4):042907. DOI: 10.1103/ PhysRevE.88.042907.
  16. Maslennikov OV, Nekorkin VI. Modular networks with delayed coupling: Synchronization and frequency control. Phys. Rev. E. 2014;90(1):012901. doi: 10.1103/PhysRevE.90.012901.
  17. di Volo M, Torcini A. Transition from asynchronous to oscillatory dynamics in balanced spiking networks with instantaneous synapses. Phys. Rev. Lett. 2018;121(12):128301. DOI: 10.1103/ PhysRevLett.121.128301.
  18. Keeley S, Byrne A, Fenton A, Rinzel J. Firing rate models for gamma oscillations. Journal of Neurophysiology. 2019;121(6):2181–2190. doi: 10.1152/jn.00741.2018.
  19. Segneri M, Bi H, Olmi S, Torcini A. Theta-nested gamma oscillations in next generation neural mass models. Frontiers in Computational Neuroscience. 2020;14:47. doi: 10.3389/fncom. 2020.00047.
  20. Bi H, di Volo M, Torcini A. Asynchronous and coherent dynamics in balanced excitatory-inhibitory spiking networks. Frontiers in Systems Neuroscience. 2021;15:752261. doi: 10.3389/fnsys. 2021.752261.
  21. Ceni A, Olmi S, Torcini A, Angulo-Garcia D. Cross frequency coupling in next generation inhibitory neural mass models. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2020;30(5):053121. doi: 10.1063/1.5125216.
  22. Pyragas K, Fedaravicius AP, Pyragiene T. Suppression of synchronous spiking in two interacting populations of excitatory and inhibitory quadratic integrate-and-fire neurons. Phys. Rev. E. 2021;104(1):014203. doi: 10.1103/PhysRevE.104.014203.
  23. Reyner-Parra D, Huguet G. Phase-locking patterns underlying effective communication in exact firing rate models of neural networks. PLoS Comput. Biol. 2022;18(5):e1009342. DOI: 10.1371/ journal.pcbi.1009342.
  24. Klinshov VV, Smelov PS, Kirillov SY. Constructive role of shot noise in the collective dynamics of neural networks. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2023;33(6):061101. doi: 10.1063/5.0147409.
  25. Feigenbaum MJ. Quantitative universality for a class of nonlinear transformations. Journal of Statistical Physics. 1978;19(1):25–52. doi: 10.1007/BF01020332.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».