On planar models of resistive wall amplifier (theory and simulations)

Cover Page

Cite item

Full Text

Abstract

The purpose of this paper is to investigate a metamaterial-based planar resistive wall amplifier and to demonstrate the applicability of simplified models for preliminary evaluations. Methods. Two two-dimensional models are considered. The first model constitutes of an infinitely wide sheet beam immersed in a strong longitudinal magnetic field propagating between two identical layers of metamaterial, with the symmetry plane placed along the beam center; the layers of metamaterial and an envelope of parallel metal plates are separated by vacuum gaps. The second model is a periodic structure of thin sheet beams immersed in a strong longitudinal magnetic field propagating through drift channels in an infinite slab of metamaterial. In both cases, the frequency properties of the metamaterial are accounted by the Drude model. The dispersion equations for these models are derived. The transition to one-dimensional linear theory is demonstrated and discussed. The results of linear theory and numerical simulations in CST Particle Studio for each model are compared and analyzed. In numerical simulation, the initial beam density modulation is utilized. In the linear regime, the gain is evaluated by the ratio of the maximum amplitudes of the Fourier transform of the collector current to the emission current. Results and conclusion. The obtained theoretical results show the sensitivity of the metamaterial-based planar resistive wall amplifier performance to geometrical dimensions and properties of the medium. It is shown that by using metamaterial it is possible to obtain a significant increase of the initial beam modulation. A qualitative correspondence between the results of planar linear theory and numerical simulation for both models is shown. The hierarchy of models is formulated.  

About the authors

Vladimir Nikolayevich Titov

Saratov State University; Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0001-6761-4267
SPIN-code: 4056-2278
Scopus Author ID: 7201990909
ResearcherId: JBR-8550-2023
ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Aleksandr Andreevich Funtov

Saratov State University

ORCID iD: 0000-0002-9121-1449
SPIN-code: 2807-6330
Scopus Author ID: 55965777100
ResearcherId: rid101693
ul. Astrakhanskaya, 83, Saratov, 410012, Russia

References

  1. Фунтов А. А. О теории гибрида ЛБВО и усилителя с комплексной диэлектрической проницаемостью // Известия вузов. ПНД. 2023. T. 31, № 4. С. 452-468 doi: 10.18500/0869-6632-003050.
  2. Birdsall С. К., Whinnerу J. R. Waves in an electron stream with general admittance walls // J. Appl. Phys. 1953. Vol. 24, no. 3. P. 314-323 doi: 10.1063/1.1721272.
  3. Zhuo S h., Liu Z h., Zhou F., Qin Y., Luo X., Ji C., Yang G., Yang G., Xie Y. THz broadband and dual-channel perfect absorbers based on patterned graphene and vanadium dioxide metamaterials // Opt. Express 2022. Vol. 30, no. 26. P. 47647-47658 doi: 10.1364/OE.476858.
  4. Guo Z., Li A., Sun Z h., Yan Z h., Liu H., Qian L. Negative permittivity behavior in microwave frequency from cellulose‑derived carbon nanofibers // Adv. Compos. Hybrid Mater. 2022. Vol. 5. P. 50-57 doi: 10.1007/s42114-021-00314-0.
  5. Birdsall С. К., Brewer О. R., Haeff A. V. The resistive-wall amplifier // Proceedings of the IRE. 1953. Vol. 41, no. 7. P. 865-875 doi: 10.1109/JRPROC.1953.274425.
  6. Rowe T., Behdad N., Booske J. Metamaterial-enhanced resistive wall amplifier design using periodically spaced inductive meandered lines // IEEE Trans. Plasma Sci. 2016. Vol. 44, no. 10. P. 2476-2484 doi: 10.1109/TPS.2016.2599144.
  7. Гинзбург Н. С., Малкин А. М., Железнов И. В., Сергеев А. С., Кочаровская Е. Р. Усиление коротковолнового излучения на основе резистивной неустойчивости релятивистского электронного потока (квазиоптическая теория) // ЖТФ. 2017. Т. 87, № 8. С. 1230-1237 doi: 10.21883/JTF.2017.08.44732.2111.
  8. Malkin A. M., Zheleznov I. V., Sergeev A. S., Zaslavsky V.,Y u., Makhalov P. B., Ginzburg N. S. Unified quasi-optical theory of short-wavelength radiation amplification by relativistic electron beams moving near the impedance surfaces // Phys. Plasmas. 2020. Vol. 27, no. 11. P. 113106 doi: 10.1063/5.0030914.
  9. Братман В. Л., Гинцбург В. А., Гришин Ю. А., Думеш Б. С., Русин Ф. С., Федотов А. Э. Импульсные широкодиапазонные оротроны миллиметровых и субмиллиметровых волн // Изв. вузов. Радиофизика. 2006. Т. 49, № 11. С. 958-963.
  10. Xi H., Wang J., He Z h., Zhu G., Wang Y., Wang H., Chen Z., Li R., Liu L. Continuous-wave Y-band planar BWO with wide tunable bandwidth // Sci. Rep. 2018. Vol. 8. P. 348 doi: 10.1038/s41598-017-18740-w.
  11. Marklein R. The finite integration technique as a general tool to compute acoustic, electromagnetic, elastodynamic, and coupled wave fields // In: Stone W.,R. (ed) Review of Radio Science. N.Y.: Wiley, 2002. P. 201-244.
  12. Касаткин Л. В. Об усилении волн пространственного заряда при прохождении пучков электронов в средах с индуктивной проводимостью // РЭ. 1961. Т. 6, № 2. С. 267-274.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).