Модуляция магнитоимпеданса в планарной магнитоэлектрической гетероструктуре ферромагнетик - пьезоэлектрик

Обложка

Цитировать

Полный текст

Аннотация

Эффект гигантского изменения импеданса ферромагнитных материалов под действием внешнего магнитного поля широко применяют для создания высокочувствительных датчиков магнитных полей. Цель данной работы состояла в демонстрации возможностей управления величиной магнитоимпеданса в структуре ферромагнетик– пьезоэлектрик с помощью электрического поля. Метод. В измерениях использовали планарную гетероструктуру, содержащую полоску из аморфного ферромагнетика Metglas толщиной 25 мкм и длиной 25 мм, механически соединенную с биморфом толщиной 0.5 мм и длиной 30 мм из пьезокерамики цирконата-титаната свинца. Через полоску пропускали переменный ток с частотой 30 кГц...10 МГц, структуру помещали в продольное постоянное магнитное поле 0...500 Э, к пьезобиморфу прикладывали переменное электрическое поле напряженностью до 400 В/см с частотой 60 Гц...50 кГц и регистрировали изменение величины импеданса полоски. Результаты. В отсутствие электрического поля обнаружено сужение области магнитных полей существования магнитоимпеданса при уменьшении частоты тока и насыщение магнитоимпеданса в магнитных полях выше 334 Э. Максимальная величина магнитоимпеданса достигала 18% при частоте тока через полоску 1 МГц. Приложение электрического поля к пьезобиморфу приводило к появлению в спектре частот напряжения на ферромагнитном слое боковых составляющих, что освидетельствует об амплитудно-фазовой модуляции магитоимпеданса. Коэффициент амплитудной модуляции достигал максимального значения 6 · 10−3 при частоте электрического поля 11.2 кГц и монотонно падал при увеличении магнитного поля. Модуляция магнитоимпеданса возникает в результате обратного магнитоэлектрического эффекта в гетероструктуре, приводящего к модуляции намагниченности ферромагнитного слоя и последующему изменению относительной магнитной проницаемости и толщины скин-слоя в ферромагнетике. Результаты могут быть использованы для создания датчиков магнитных полей, управляемых электрическим полем. 

Об авторах

Дмитрий Алексеевич Бурдин

МИРЭА-Российский технологический университет

пр. Вернадского, д. 78

Дмитрий Владимирович Чашин

МИРЭА-Российский технологический университет

пр. Вернадского, д. 78

Николай Андреевич Экономов

МИРЭА-Российский технологический университет

пр. Вернадского, д. 78

Юрий Константинович Фетисов

МИРЭА-Российский технологический университет

пр. Вернадского, д. 78

Список литературы

  1. Knobel M., Pirota K. R. Giant magnetoimpedance: concepts and recent progress // J. Magn. Magn. Mater. 2002. Vol. 242-245, no. 1. P. 33-40. doi: 10.1016/S0304-8853(01)01180-5.
  2. Panina L. V., Mohri K. Magneto-impedance effect in amorphous wires // Appl. Phys. Lett. 1994. Vol. 65, no. 9. P. 1189-1191. doi: 10.1063/1.112104.
  3. Panina L. V., Mohri K., Uchiyama T., Noda M., Bushida K. Giant magneto-impedance in Corich amorphous wires and films // IEEE Trans. Magn. 1995. Vol. 31, no. 2. P. 1249-1260. doi: 10.1109/20.364815.
  4. Phan M.-H., Peng H.-X. Giant magnetoimpedance materials: Fundamentals and applications // Progress in Materials Science. 2008. Vol. 53, no. 2. P. 323-420. doi: 10.1016/j.pmatsci.2007.05.003.
  5. Shen L. P., Uchiyama T., Mohri K., Kita E., Bushida K. Sensitive stress-impedance micro sensor using amorphous magnetostrictive wire // IEEE Trans. Magn. 1997. Vol. 33, no. 5. P. 3355-3357. doi: 10.1109/20.617942.
  6. Gazda P., Nowicki M., Szewczyk R. Comparison of stress-impedance effect in amorphous ribbons with positive and negative magnetostriction // Materials. 2019. Vol. 12, no. 2. P. 275. doi: 10.3390/ma12020275.
  7. Nan C.-W., Bichurin M. I., Dong S., Viehland D., Srinivasan G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions // J. Appl. Phys. 2008. Vol. 103, no. 3. P. 031101. doi: 10.1063/1.2836410.
  8. Wang W., Wang Z., Luo X., Tao J., Zhang N., Xu X., Zhou L. Capacitive type magnetoimpedance effect in piezoelectric-magnetostrictive composite resonator // Appl. Phys. Lett. 2015. Vol. 107, no. 17. P. 172904. doi: 10.1063/1.4934821.
  9. Leung C. M., Zhuang X., Xu J., Li J., Zhang J., Srinivasan G., Viehland D. Enhanced tunability of magneto-impedance and magneto-capacitance in annealed Metglas/PZT magnetoelectric composites // AIP Advances. 2018. Vol. 8, no. 5. P. 055803. doi: 10.1063/1.5006203.
  10. Chen L., Wang Y., Luo T., Zou Y., Wan Z. The study of magnetoimpedance effect for magnetoelectric laminate composites with different magnetostrictive layers // Materials. 2021. Vol. 14, no. 21. P. 6397. doi: 10.3390/ma14216397.
  11. Amalou F., Gijs M. A. M. Giant magnetoimpedance in trilayer structures of patterned magnetic amorphous ribbons // Appl. Phys. Lett. 2002. Vol. 81, no. 9. P. 1654-1656. doi: 10.1063/1.1499769.
  12. Fetisov L. Y., Chashin D. V., Burdin D. A., Saveliev D. V., Ekonomov N. A., Srinivasan G., Fetisov Y. K. Nonlinear converse magnetoelectric effects in a ferromagnetic-piezoelectric bilayer // Appl. Phys. Lett. 2018. Vol. 113, no. 21. P. 212903. doi: 10.1063/1.5054584.
  13. Гоноровский И. С. Радиотехнические цепи и сигналы. Москва: Радио и связь, 1986. 512 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».