Non-invasive optical methods (spectrometry, thermal imaging) when determining nitrogen deficiency and the physiological state of wheat in the field conditions
- Authors: Rusakov D.V1, Kanash E.V1, Chesnokov Y.V1
-
Affiliations:
- Agrophysical Research Institute
- Issue: No 2 (2025)
- Pages: 124-137
- Section: Biological Sciences
- URL: https://journal-vniispk.ru/0869-7698/article/view/307740
- DOI: https://doi.org/10.31857/S0869769825020094
- EDN: https://elibrary.ru/GEIDEE
- ID: 307740
Cite item
Full Text
Abstract
About the authors
D. V Rusakov
Agrophysical Research Institute
Email: rdv_vgsha@mail.ru
Candidate of Sciences in Agriculture, Senior Researcher Saint-Petersburg, Russia
E. V Kanash
Agrophysical Research Institute
Email: ykanash@yandex.ru
Doctor of Sciences in Biology, Chief Researcher Saint-Petersburg, Russia
Yu. V Chesnokov
Agrophysical Research Institute
Email: yuv_chesnokov@agrophys.ru
Corresponding Member of RAS, Doctor of Sciences in Biology, Director Saint-Petersburg, Russia
References
- Dobrowski S.Z., Pushnik J.C., Zarco-Tejada P.J., Ustin S.L. Simple reflectance indices track heat and water-stress induced changes in steady-state chlorophyll fluorescence at the canopy level // Remote Sensing of Environment. 2005. Vol. 97 (3). P. 403-414. doi: 10.1016/j.rse.2005.05.006.
- Rosso P.H., Pushnik, J.C., Lay M., Ustin S.L. Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination // Environmental Pollution. 2005. Vol. 137 (2). P. 241-252. doi: 10.1016/j.envpol.2005.02.025.
- Kanash E.V., Panova G.G., Blokhina S.Yu. Optical criteria for assessment of efficiency and adaptogenic characteristics of biologically active preparations // Acta Horticulturae. 2013. 1009 (ISHS). P. 37-44. doi: 10.17660/ActaHortic.2013.1009.2.
- Graeff S., Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements // European Journal of Agronomy. 2003. Vol. 19 (4). P. 611-618. doi: 10.1016/S1161-0301(03)00007-8.
- Kanash E.V., Osipov Y.A. Optical signals of oxidative stressin crops physiological state diagnostics. Precision agriculture Wageningen. Netherlands, 2009. P. 81-89. doi: 10.3920/978-90-8686-664-9.
- Yakushev V., Kanash E., Rusakov D., Blokhina S. Specific and non-specific changes in optical characteristics of spring wheat leaves under nitrogen and water deficiency // Advances in Animal Biosciences: Precision Agriculture. 2017. Vol. 8 (02). P. 229-232. doi: 10.1017/S204047001700053X.
- Yakushev V.P., Kanash E.V. Evaluation of wheat nitrogen status by colorimetric characteristics of crop canopy presented in digital images // Journal of Agricultural Informatics. 2016. Vol. 7(1). P. 65-74. doi: 10.17700/jai.2016.7.1.268.
- Sims D.A., Gamon J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages // Remote Sensing of Environment. 2002. Vol. 81(2/3). P. 337-354. doi: 10.1016/S0034-4257(02)00010-X.
- Merzlyak M.N., Solovchenko A.E., Smagin A.I., Gitelson A.A. Apple flavonols during fruit adaptation to solar radiation: spectral features and techniques for non-destructive assessment // Russian Journal of Plant Physiology. 2005. Vol. 162 (2). P. 151-160. doi: 10.1016/j.jplph.2004.07.002.
- Penuelas J., Baret F., Filella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral re ectance // Photosynthetica. 1995. Vol. 31 (2). P. 221-230.
- Gamon J., Penuelas J., Field C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic ef ciency // Remote Sensing of Environment. 1992. Vol. 41 (1). P. 35-44.
- Rusakov D.V., Kanash E.V. Spectral characteristics of leaves diffuse reflection in conditions of soil drought: a study of soft spring wheat cultivars of different drought resistance // Plant. Soil and Environment. 2022. Vol. 68. (3). P. 137-145. doi: 10.17221/483/2021-PSE.
- Xu H., Ying Y. Application of infrared thermal imaging in the identi cation of citrus on trees // Journal of Infrared and Millimeter Waves. 2004. Vol. 23. P. 353-356.
- Möller M., Alchanatis V., Cohen Y., Meron M., Tsipris J., Ostrovsky V. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine // Journal of Experimental Botany. 2007. Vol. 58. P. 827-838. doi: 10.1093/jxb/erl115.
- Xu J., Lv Y., Liu X., Dalson T., Yang S., Wu J. Diagnosing Crop Water Stress of Rice using Infrared Thermal Imager under Water De cit Condition // International Journal of Agriculture and Biology. 2015. Vol. 18. P. 565-572. doi: 10.17957/IJAB/15.0125.
- Ghazouani H., Capodici F., Ciraolo G., Maltese A., Rallo G., Provenzano G. Potential of Thermal Images and Simulation Models to Assess Water and Salt Stress: Application to Potato Crop in Central Tunisia // Chemical Engineering Transactions. 2017. Vol. 58. P. 709-714. doi: 10.3303/CET1758119.
- García-Tejero I.F., Rubio A.E., Viñuela I., Hernández A., Gutiérrez-Gordillo S., Rodríguez-Pleguezuelo C.R., Durá-n-Zuazo V.H. Thermal imaging at plant level to assess the crop-water status in almond trees (cv. Guara) under de cit irrigation strategies // Agricultural Water Management. 2018. Vol. 208. P. 176-186. doi: 10.1016/j.agwat.2018.06.002.
- Vieira G.H.S., Ferrarezi R.S. Use of Thermal Imaging to Assess Water Status in Citrus Plants in Greenhouses // Horticulturae. 2021. Vol. 7 (8), 249. doi: 10.3390/horticulturae7080249.
- Trentin R., Zolnier S., Ribeiro A., Steidle Neto A.J. Transpiration and leaf temperature of sugarcane under different matric potential values // Engenharia Agricola. 2011. Vol. 31 (6). P. 1085-1095. doi: 10.1590/s0100-69162011000600006.
- Gardner B.R., Blad B.L., Watts D.G. Plant and air temperatures in differentially irrigated corn // Agricultural Meteorology. 1981. Vol. 25. P. 207-217.
- Jackson R.D. Canopy temperature and crop water stress // Advancesin Irrigaton. 1982. P. 43-85. doi: 10.1016/b978-0-12-024301-3.50009-5.
- Testi L., Goldhamer D.A., Iniesta F., Salinas M. Crop water stress index is a sensitive water stress indicator in pistachio trees // Irrigation Science. 2008. Vol. 26. 395-405. doi: 10.1007/s00271-008-0104-5.
- Grant O.M., Tronina L., Jones H.G., Chaves M.M. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes // Journal of Experimental Botany. 2007. Vol. 58. P. 815-825. doi: 10.1093/jxb/erl153.
- Reynolds M.P., Dreccer F., Trethowan R. Drought-adaptive traits derived from wheat wild relatives and landraces // Journal of Experimental Botany. 2007. Vol. 58. P. 177-186. doi: 10.1093/jxb/erl250.
- Leinonen N., Jones H.G. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress // Journal of Experimental Botany. 2004. Vol. 55, No. 401. P. 1423-1431. doi: 10.1093/jxb/erh146.
- Araus J.L., Slafer G.A., Reynolds M.P., Royo C. Plant Breeding and Drought in C3 Cereals: What Should We Breed For? // Annals of Botany. 2002. Vol. 89. P. 925-940. doi: 10.1093/aob/mcf049.
- Chesnokov Y.V., Kanash E.V., Mirskaya G.V., Kocherina N.V., Rusakov D.V., Lohwasser U., Börner A. QTL mapping of diffuse re ectance indices of leaves in hexaploid bread wheat (Triticum aestivum L.) // Russian Journal of Plant Physiology. 2019. Vol. 66. P. 77-86. doi: 10.1134/S1021443719010047.
Supplementary files
