Formation of fumarate-containing smart coating for anti-corrosion protection of magnesium alloy MA8
- Authors: Gnedenkov A.S.1, Nomerovskii A.D.1, Marchenko V.S.1, Sinebryukhov S.L.1, Gnedenkov S.V.1
-
Affiliations:
- Institute of Chemistry, FEB RAS
- Issue: No 4 (2025)
- Pages: 54-66
- Section: Physical chemistry of surface and nanosized systems
- URL: https://journal-vniispk.ru/0869-7698/article/view/351723
- DOI: https://doi.org/10.7868/S3034530825040059
- ID: 351723
Cite item
Full Text
Abstract
About the authors
A. S. Gnedenkov
Institute of Chemistry, FEB RAS
Email: asg17@mail.com
Vladivostok, Russia
A. D. Nomerovskii
Institute of Chemistry, FEB RAS
Email: nomerovskii.ad@outlook.com
Vladivostok, Russia
V. S. Marchenko
Institute of Chemistry, FEB RAS
Email: filonina.vs@gmail.com
Vladivostok, Russia
S. L. Sinebryukhov
Institute of Chemistry, FEB RAS
Email: sls@ich.dvo.ru
Vladivostok, Russia
S. V. Gnedenkov
Institute of Chemistry, FEB RAS
Email: svg21@hotmail.com
Vladivostok, Russia
References
- Liu M. et al. Effect of medium renewal mode on the degradation behavior of Mg alloys for biomedical applications during the long-term in vitro test.Corros. Sci.2024.;229:111851.
- Wang X. et al. Structure-function integrated biodegradable Mg/polymer composites: Design, manufacturing, properties, and biomedical applications.Bioact. Mater.2024;39:74–105.
- Shekargoftar M. et al. Effects of plasma surface modification of Mg-2Y-2Zn-1Mn for biomedical applications.Materialia.2024:102285.
- Luthringer B.J.C., Feyerabend F., Willumeit-Römer R. Magnesium-based implants: a mini-review.Magnes. Res.2014;27(4):142–154.
- Yang Y. et al. Research advances of magnesium and magnesium alloys worldwide in 2022. J. Magnes. Alloy.2023;11(8):2611–2654.
- Rider P. et al. Biodegradable magnesium barrier membrane used for guided bone regeneration in dental surgery.Bioact. Mater.2022;14:152–168.
- Gazit T. et al. Foot surgery using resorbable magnesium screws.J. Foot Ankle Surg.2024. https://doi.org/10.1053/j.jfas.2023.09.002
- Tang C.-F. et al. Possibility of magnesium supplementation for supportive treatment in patients with COVID-19.Eur. J. Pharmacol.2020;886:173546.
- Niranjan C.A. et al. Magnesium alloys as extremely promising alternatives for temporary orthopedic implants – A review.J. Magnes. Alloy.2023;11(8):2688–2718.
- Fairley J.L. et al. Magnesium status and magnesium therapy in cardiac surgery: A systematic review and meta-analysis focusing on arrhythmia prevention.J. Crit. Care.2017;42:69–77.
- Gnedenkov A.S. et al. The detailed corrosion performance of bioresorbable Mg–0.8Ca alloy in physiological solutions.J. Magnes. Alloy.2022;10(5):1326–1350.
- Noviana D. et al. The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats.J. Orthop. Transl.2016;5:9–15.
- Thanaa T.T. et al. Improving the surface properties of Mg based-plasma electrolytic oxidation (PEO) coatings under the fluoride electrolytes: A review.Inorg. Chem. Commun.2024;170:113163.
- Peñuela-Cruz C.E. et al. Synthesis of composite coatings based on Mg and Ti oxides by PEO for modulation of Mg corrosion resistance.J. Mater. Res. Technol.2024;33:1801–1808.
- Monfared M.M. et al. Enhancement of PEO-coated ZK60 Mg alloy: Curcumin-enriched mesoporous silica and PLA/bioglass for antibacterial properties, bioactivity and biocorrosion resistance.Surf. Coatings Technol.2024;493:131237.
- Chen Q. et al. Synergistic chelating agents for in-situ synthesis of Mg–Al LDH films on PEO treated Mg alloy.J. Magnes. Alloy.2024. https://doi.org/10.1016/j.jma.2024.05.015
- Gnedenkov A.S. et al. The effect of smart PEO-coatings impregnated with corrosion inhibitors on the protective properties of AlMg3 aluminum alloy.Materials (Basel).2023;16(6):2215
- Gnedenkov S.V. et al. Composite protective coatings on the nitinol surface.Materials and Manufacturing Processes. 2008;23(8):879–883.
- Gnedenkov A.S. et al. Hydroxyapatite-containing PEO-coating design for biodegradable Mg–0.8Ca alloy: Formation and corrosion behaviour.J.Magnes. Alloy.2023. https://doi.org/10.1016/j.jma.2022.12.002
- Gnedenkov A.S. et al. Smart composite antibacterial coatings with active corrosion protection of magnesium alloys.J. Magnes. Alloy.2022;10(12):3589–3611.
- Gnedenkov S.V. et al. Properties of coatings formed on magnesium alloy MA8 by the method of plasma electrolytic oxidation.Vestnik of the FEB RAS.2010;(5): 35–46. (In Russ.).
- Gnedenkov A. S. et al. Corrosion of the welded aluminium alloy in 0.5 M NaCl solution. Part 2: Coating protection.Materials (Basel).2018;11(11):2177.
- Mashtalyar D.V. et al. New approach to formation of coatings on Mg–Mn–Ce alloy using a combination of plasma treatment and spraying of fluoropolymers.J. Magnes. Alloy. 2022;10(4):1033–1050.
- Gnedenkov A.S. et al. Design of self-healing PEO-based protective layers containing in-situ grown LDH loaded with inhibitor on the MA8 magnesium alloy.J. Magnes. Alloy.2023;11(10):3688–3709.
- Maltseva A. et al. In situ surface film evolution during Mg aqueous corrosion in presence of selected carboxylates.Corros. Sci.2020;171:108484.
- Daavari M. et al. In vitro corrosion-assisted cracking of AZ31B Mg alloy with a hybrid PEO+MWCNTs/PCL coating.Surfaces and Interfaces.2023;42:103446.
- Yu X., Zhang M., Chen H. Superhydrophobic anticorrosion coating with active protection effect: Graphene oxide-loaded inorganic/organic corrosion inhibitor for magnesium alloys.Surf. Coatings Technol.2024;480:130586.
- Ahmed M.A., Amin S., Mohamed A.A. Current and emerging trends of inorganic, organic and eco-friendly corrosion inhibitors.RSC Adv.2024;14(43):31877–31920.
- Huang D. et al. Inhibition effect of inorganic and organic inhibitors on the corrosion of Mg–10Gd–3Y–0.5Zr alloy in an ethylene glycol solution at ambient and elevated temperatures.Electrochim. Acta.2011;56(27):10166–10178.
- Yang X. et al. Formation of protective conversion coating on Mg surface by inorganic inhibitor.Corros. Sci.2023;215:111044.
- Jiang H. et al. Effects of interlayer-modified layered double hydroxides with organic corrosion inhibiting ions on the properties of cement-based materials and reinforcement corrosion in chloride environment.Cem. Concr. Compos.2024;154:105793.
- Molina E.F.H. et al. Corrosion protection of AS21 alloy by coatings containing Mg/Al hydrotalcites impregnated with the organic corrosion inhibitor 2-mercaptobenzimidazole.Int. J. Electrochem. Sci.2020;15(10):10028–10039.
- Yang J. et al. Experimental and quantum chemical studies of carboxylates as corrosion inhibitors for AM50 alloy in pH neutral NaCl solution.J. Magnes. Alloy.2022;10(2):555–568.
- Lamaka S.V. et al. Comprehensive screening of Mg corrosion inhibitors.Corros. Sci.2017;128:224–240.
- Gnedenkov A.S. et al. Carboxylates as green corrosion inhibitors of magnesium alloy for biomedical application.J. Magnes. Alloy.2024;12(7):2909–2936.
- Ouyang Y. et al. A self-healing coating based on facile pH-responsive nanocontainers for corrosion protection of magnesium alloy.J. Magnes. Alloy.2022;10(3):836–849.
- Guo X. et al. Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte.J. Alloys Compd.2009;482(1–2):487–497.
- Yu X. et al. Polydopamine-coated zeolitic imidazolate framework for enhanced anti-corrosion and self-healing capabilities of epoxy coating on magnesium alloy.Appl. Surf. Sci.2025;680:161332.
- Qiang Y. et al. Polydopamine encapsulates Uio66 loaded with 2-mercaptobenzimidazole composite as intelligent and controllable nanoreservoirs to establish superior active/passive anticorrosion coating.Chem. Eng. J.2025;503:158559.
- Shamsi M., Sedighi M., Bagheri A. Surface modification of biodegradable Mg/HA composite by electrospinning of PCL/HA fibers coating: Mechanical properties, corrosion, and biocompatibility.Trans. Nonferrous Met. Soc. China.2024;34(5):1470–1486.
- Liu K.-P. et al. Biocompatibility and corrosion resistance of drug coatings with different polymers for magnesium alloy cardiovascular stents.Colloids Surfaces B Biointerfaces.2025;245:114202.
- Gnedenkov S.V. et al. Composite hydroxyapatite–PTFE coatings on Mg–Mn–Ce alloy for resorbable implant applications via a plasma electrolytic oxidation-based route.J. Taiwan Inst. Chem. Eng.2014;45(6):3104–3109.
Supplementary files


