Calibration and testing of a new magnitude scale: the case study of a strong crustal earthquake on 01.01.2024 in Japan (Mw = 7,5)
- Authors: Konovalov A.V1, Orlin I.D1, Stepnova Y.A1
-
Affiliations:
- Far East Geological Institute, FEB RAS
- Issue: No 5 (2025)
- Pages: 104–115
- Section: Earth and Environment Sciences
- URL: https://journal-vniispk.ru/0869-7698/article/view/357414
- DOI: https://doi.org/10.7868/S3034530825050088
- ID: 357414
Cite item
Full Text
Abstract
A crustal earthquake and its aftershocks that occurred in Japan (Mw = 7,5, 01.01.2024) were studied to make measurements and analyze the parameters of strong ground motion, including the Arias intensity. The latter is one of the key physical parameters used in engineering seismology. The level of the Arias intensity is directly connected with the stress drop in an earthquake source. Therefore, developing and calibrating a magnitude scale that would take into account not only fault dimensions, but also the stress drop in an earthquake source is a vital task of seismological observations. In this paper we present our test results of a new magnitude scale (MIa3) based on a modified Arias intensity. The scale was calibrated to medium and moderate earthquakes in the target area (M ~5). The high efficiency of the proposed scale is evidenced by the magnitudes, determined through the new method, that are almost consistent with the moment magnitude (Mw).
Keywords
About the authors
A. V Konovalov
Far East Geological Institute, FEB RAS
Author for correspondence.
Email: a.konovalov@geophystech.ru
ORCID iD: 0000-0003-2997-1524
Candidate of Sciences in Physics and Mathematics, Leading Researcher Vladivostok, Russia
I. D Orlin
Far East Geological Institute, FEB RAS
Email: office@geophystech.ru
Engineer Vladivostok, Russia
Yu. A Stepnova
Far East Geological Institute, FEB RAS
Email: stepnova@fegi.ru
ORCID iD: 0000-0001-5263-5161
Candidate of Sciences in Geology and Mineralogy, Senior Researcher Vladivostok, Russia
References
- Kanamori H. The energy release in great earthquakes // J. Geophys. Res. 1977. Vol. 82, No. 20. P. 2981–2987.
- Oth A., Miyake H., Bindi D. On the relation of earthquake stress drop and ground motion variability // J. Geophys. Res. Solid Earth. 2017. Vol. 122, No. 7. P. 5474–5492. https://doi.org/10.1002/2017JB014026
- Picozzi M., Bindi D., Spallarossa D., Oth A., Di Giacomo D., Zollo A. Moment and energy magnitudes: diversity of views on earthquake shaking potential and earthquake statistics // Geophys. J. Intern. 2019. No. 2. P. 1245–1259. https://doi.org/10.1093/gji/ggy488
- Bindi D., Zaccarelli R., Strollo A., Di Giacomo D., Heinloo A., Evans P., Cotton F., Tilmann F. Enriching the GEOFON seismic catalog with automatic energy magnitude estimations // Earth Syst. Sci. Data. 2024. Vol. 16, No. 4. P. 1733–1745. https://doi.org/10.5194/essd-16-1733-2024
- Parolai S., Spallarossa D., Oth A. et al. A Proposal for a High Frequency Earthquake Magnitude (m3Hz) for Seismic Hazard and Rapid Damage Assessment // Seismol. Res. Lett. 2024. Vol. 96, No. 3. P. 1665–1674. https://doi.org/10.1785/0220240226
- Ottemöller L., Havskov J. Moment Magnitude Determination for Local and Regional Earthquakes Based on Source Spectra // Bull. Seismol. Soc. Am. 2003. Vol. 93, No. 1. P. 203–214. https://doi.org/10.1785/0120010220
- Hanks T.C., Johnston A.C. Common features of the excitation and propagation of strong ground motion for North American earthquakes // Bull. Seismol. Soc. Am. 1992. Vol. 82, No. 1. P. 1–23. https://doi.org/10.1785/BSSA0820010001
- Konovalov A., Orlin I., Stepnov A., Stepnova Yu. Physically Based and Empirical Ground Motion Prediction Equations for Multiple Intensity Measures (PGA, PGV, Ia, FIV3, CII, and Maximum Fourier Acceleration Spectra) on Sakhalin Island // Geosciences. 2023. Vol. 13, No. 7. 201. https://doi.org/10.3390/geosciences13070201
- Xu B., Rathje E.M., Hashash Y.M.A., Stewart J.P., Campbell K.W., Silva W.J. κ0 for soil sites: Observations from KiK-net sites and their use in constraining small-strain damping profiles for site response analysis // Earthq. Spectra. 2020. Vol. 36. P. 111–137. https://doi.org/10.1177/8755293019878188
- National Earthquake Information Center of United States Geological Survey. URL: https://earthquake.usgs.gov (date of access: 04.06.2025).
- NIED. F-net. URL: https://www.fnet.bosai.go.jp (date of access: 04.06.2025).
- AIST. Active fault database of Japan. URL: https://gbank.gsj.jp/activefault/cgi/segment_param_e?SearchTYPE=&fval_type1=329-04&segment_id=329-04&topic_list=2&search_mode=2 (date of access: 04.06.2025).
- Yoshida K., Takagi R., Fukushima Y., Ando R., Ohta Yu., Hiramatsu Y. Role of a hidden fault in the early process of the 2024 Mw 7.5 Noto Peninsula earthquake // Geophysical Research Letters. 2024. Vol. 51. e2024GL110993. https://doi.org/10.1029/2024GL110993
- M 7.5 – 2024 Noto Peninsula, Japan Earthquake. Finite Fault // National Earthquake Information Center of United States Geological Survey. URL: https://earthquake.usgs.gov/earthquakes/eventpage/us6000m0xl/finite-fault (date of access: 04.06.2025).
- Nakajima J. Crustal structure beneath earthquake swarm in the Noto peninsula, Japan // Earth, Planets and Space. 2022. Vol. 74. 160. https://doi.org/10.1186/s40623-022-01719-x
- M 7.5 – 2024 Noto Peninsula, Japan Earthquake. Interactive Map // National Earthquake Information Center of United States Geological Survey. URL: https://earthquake.usgs.gov/earthquakes/eventpage/us6000m0xl/map (date of access: 04.06.2025).
- NIED K-NET, KiK-net / National Research Institute for Earth Science and Disaster Resilience. 2019. URL: https://www.kyoshin.bosai.go.jp (date of access: 04.06.2025). https://doi.org/10.17598/NIED.0004
- Гусев А.А., Гусева Е.М., Павлов В.М. Моделирование движения грунта при Петропавловском землетрясении 24.11.1971 (М = 7,6) // Физика Земли. 2009. № 5. С. 29–38.
- Gusev A.A., Guseva E.M., Pavlov V.M. Modeling of the ground motion for the Petropavlovsk earthquake of November 24, 1971 (M = 7.6). Fizika Zemli. 2009;(5):29–38. (In Russ.).
- Irikura K., Miyake H. Recipe for predicting strong ground motion from crustal earthquake scenarios // Pure Appl. Geophys. 2011. Vol. 168, No. 1/2. P. 85–104. https://doi.org/10.1007/s00024-010-0150-9
Supplementary files

