Pathomorphological Features of Lung Fibrosis in Individuals Occupationally Exposed to Alpha Radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this study was to search for the specific morphological features of radiation-induced lung fibrosis compared to pulmonary fibrosis of another origin, using biological specimens of lung tissue collected from workers internally exposed to alpha radiation. The morphological features of lung fibrosis were defined using biological specimens of lung tissue that had been collected during autopsy examinations from 56 workers diagnosed with plutonium-induced lung fibrosis during life, from 34 workers with lung fibrosis of another origin (due to chronic inflammatory lung diseases) and from 35 workers without clinical pulmonary pathology (controls). The total lung-absorbed dose of gamma radiation from external exposure did not significantly differ among the studied groups, and the total lung-absorbed dose of alpha radiation from internal exposure was significantly higher in workers with plutonium-induced lung fibrosis. To investigate the extracellular matrix components, mono- and polyclonal labeled antibodies against type I, IV, and V collagens were used. In addition, to evaluate the system of extracellular matrix metabolism regulation, the antibodies against matrix metalloproteinases MMP-2, MMP-9, tissue inhibitors of matrix metalloproteinases TIMP-1 and TIMP-2 were used. The study revealed qualitative and quantitative morphological peculiarities of plutonium-induced lung fibrosis compared to lung fibrosis of another origin. This allows us to conclude that plutonium-induced lung fibrosis is a specific type of lung fibrosis, which is characterized with specific location and architectonics of fibrosis foci within the lung, and with changes in levels of collagen, elastic and reticular fibers in the pulmonary stroma. The analysis demonstrated that hyperproduction of type V collagen plays a key role in the development of plutonium-induced lung fibrosis. In addition, the imbalance between the expression of MMPs and their inhibitors plays an important role in the development of lung fibrosis.

Full Text

Restricted Access

About the authors

Gleb V. Sychugov

South Ural State Medical University affiliated, Ministry of Health of the Russian Federation

Email: docsgv@yandex.ru
ORCID iD: 0000-0003-3251-6944
Russian Federation, Chelyabinsk

Tamara V. Azizova

Southern Urals Biophysics Institute affiliate, Federal Medical Biological Agency

Author for correspondence.
Email: clinic@subi.su
ORCID iD: 0000-0001-6954-2674
Russian Federation, Ozyorsk

Sergey V. Osovets

Southern Urals Biophysics Institute affiliate, Federal Medical Biological Agency

Email: osovets1@yandex.ru
ORCID iD: 0000-0002-6180-2061
Russian Federation, Ozyorsk

Evgeniy L. Kazachkov

South Ural State Medical University affiliated, Ministry of Health of the Russian Federation

Email: doctorkel@yandex.ru
ORCID iD: 0000-0002-4512-3421
Russian Federation, Chelyabinsk

Evgeniya S. Grigoryeva

Southern Urals Biophysics Institute affiliate, Federal Medical Biological Agency

Email: grig@subi.su
ORCID iD: 0000-0003-1806-9922
Russian Federation, Ozyorsk

Alexsander G. Sychugov

South Ural State Medical University affiliated, Ministry of Health of the Russian Federation

Email: docsgv@yandex.ru
ORCID iD: 0009-0004-4803-1022
Russian Federation, Chelyabinsk

References

  1. Гуськова А.К., Байсоголов Г.Д. Лучевая болезнь человека. М.: Медицина, 1971; 382 с. [Guskova A.K., Baisogolov G.D. Luchevaya bolizn cheloveka = Human Radiation Syndrome (Sketches). Moscow: Medicine, 1971. 382 p. (In Russ.)].
  2. Guskova A., Baisogolov G.D. Radiation Sickness in Man (Outlines). New York: United Nations, 1971.
  3. Плутоний. Радиационная безопасность. Под ред. Л.А. Ильина. М.: ИздАТ, 2005. 416 с. [Plutoniy. Radiationnaya bezopasnost = Plutonium. Radiation safety. Edited by Ilyin LA. Moscow: IzdAT, 2005. 416 p. (In Russ.)].
  4. Authors on behalf of ICRP; Stewart F.A., Akleyev A.V., Hauer-Jensen M., Hendry J.H., Kleiman N.J., Macvittie T.J., Aleman B.M., Edgar A.B., Mabuchi K., Muirhead C.R., Shore R.E., Wallace W.H. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–hreshold doses for tissue reactions in a radiation protection context. Ann ICRP. 2012;41 (1-2):1–322. https://doi.org/10.1016/j.icrp.2012.02.001
  5. Azizova T., Moseeva M., Grigoryeva E. et al. Registry of Plutonium-induced Lung Fibrosis in a Russian Nuclear Worker Cohort. Health Phys. 2020;118(2):185–192. https://doi.org/10.1097/HP.0000000000001131
  6. Волкова Л.Г. Пневмосклероз как исход лучевой болезни, вызванной длительной интоксикацией плутонием. Бюлл. радиац. медицины. 1961;2:82–91. [Volkova L.G. Pnevmoskleroz kak iskhod luchevoy bolezni, vyzvannoy dlitel'noy intoksikatsiyey plutoniyem. Bulletin of Radiation Medicine. 1961;2:82–91 (in Russ.)].
  7. Azizova T.V., Day R.D., Wald N. et al. N.G., Stetsenko L.A., Grigoryeva E.S., Krupenina L.N., Vlasenko E.V. The “clinic” medical-dosimetric database of Mayak production association workers: structure, characteristics and prospects of utilization. Health Phys. 2008;94(5):449–58. https://doi.org/10.1097/01.HP.0000300757.00912.a2
  8. Azizova T.V., Zhuntova G.V., Haylock R. et al. Chronic bronchitis incidence in the extended cohort of Mayak workers first employed during 1948–1982. Occup. Environ. Med. 2017;74(2):105–113. https://doi.org/10.1136/oemed-2015-103283
  9. Azizova T., Briks K., Bannikova M., Grigoryeva E. Hypertension Incidence Risk in a Cohort of Russian Workers Exposed to Radiation at the Mayak Production Association Over Prolonged Periods. Hypertension. 2019;73(6):1174–1184. https://doi.org/10.1161/HYPERTENSIONAHA.118.11719
  10. Azizova T.V., Grigoryeva E.S., Haylock R.G. et al. Ischaemic heart disease incidence and mortality in an extended cohort of Mayak workers first employed in 1948–1982. Br. J. Radiol. 2015;88(1054):20150169. https://doi.org/10.1259/bjr.20150169
  11. Azizova T.V., Bannikova M.V., Grigoryeva E.S., Rybkina V.L. Risk of malignant skin neoplasms in a cohort of workers occupationally exposed to ionizing radiation at low dose rates. PLoS One. 2018;13(10):e0205060. https://doi.org/10.1371/journal.pone.0205060
  12. Loffredo C., Goerlitz D., Sokolova S. et al. The Russian Human Radiobiological Tissue Repository: A Unique Resource for Studies of Plutonium-Exposed Workers. Radiat. Prot. Dosim. 2017;173(1-3):10–15. https://doi.org/10.1093/rpd/ncw303
  13. Sokolnikov M.E., Gilbert E.S., Preston D.L. et al. Lung, liver and bone cancer mortality in Mayak workers. Int. J. Cancer. 2008;123(4):905–11. https://doi.org/10.1002/ijc.23581
  14. Gilbert E.S., Sokolnikov M.E., Preston D.L. et al. Lung cancer risks from plutonium: an updated analysis of data from the Mayak worker cohort. Radiat.Res. 2013;179(3):332–42. https://doi.org/10.1667/RR3054.1
  15. Koshurnikova N.A., Aristov V.P., Lemberg V.K. et al. Mechanism of development of plutonium-induced pulmonary sclerosis. Health Phys. 1972;22(6):753–4. https://doi.org/10.1097/00004032-197206000-00033
  16. Tokarskaya Z.B., Okladnikova N.D., Belyaeva Z.D., Drozhko E.G. The influence of radiation and nonradiation factors on the lung cancer incidence among the workers of the nuclear enterprise Mayak. Health Phys. 1995;69(3):356–66. https://doi.org/10.1097/00004032-199509000-00007
  17. Ashcroft T., Simpson J.M., Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J. Clin. Pathol. 1988;41(4):467–70. https://doi.org/10.1136/jcp.41.4.467
  18. Hübner R.H., Gitter W., El Mokhtari N.E. et al. Standardized quantification of pulmonary fibrosis in histological samples. Biotechniques. 2008;44(4):507–11, 514–7. https://doi.org/10.2144/000112729
  19. Есипова И.К. Патологическая анатомия легких. М.: Медицина, 1976. 183 с. [Esipova I.K. Patologocheskaya anatomiya legkih = Pathological anatomy of the lungs. Moscow: Medicine, 1976. 183 p. (in Russ.)].
  20. Allen D.C., Cameron R.I., ed. Histopathology specimens. Clinical, pathological and laboratory aspects. 2nd ed. Berlin (Germany): Springer, 2013. 512 p.
  21. Suvarna K., Layton C., Bancroft J.D. Bancroft’s theory and practice of histological techniques. 8th ed. Amsterdam (Netherlands): Elsevier, 2018. 672 p.
  22. Sychugov G., Azizova T., Osovets S. et al. Morphological features of pulmonary fibrosis in workers occupationally exposed to alpha radiation. Int. J. Radiat. Biol. 2020;96(4):448–460. https://doi.org/10.1080/09553002.2020.1721601
  23. Rydell-Törmänen K., Andréasson K., Hesselstrand R. et al. Extracellular matrix alterations and acute inflammation; developing in parallel during early induction of pulmonary fibrosis. Lab. Invest. 2012;92(6):917–25. https://doi.org/10.1038/labinvest.2012.57
  24. Gilhodes J.C., Julé Y., Kreuz S. et al. Quantification of Pulmonary Fibrosis in a Bleomycin Mouse Model Using Automated Histological Image Analysis. PLoS One. 2017;12(1):e0170561. https://doi.org/10.1371/journal.pone.0170561
  25. Lawson C.L., Hanson R.J. Solving Least Squares Problems. Revised republication. Philadelphia: Society for Industrial and Applied Mathematics, 1996. 352 p.
  26. Draper N.R., Smith H. Applied Regression Analysis, 3rd edition. New York: John Wiley&Sons, 1998. 736 p.
  27. Кобзарь А.И. Прикладная математическая статистика: монография. М.: Физматлит, 2012. 816 с. [Kobzar A.I. Prikladnaya matematicheskaya statistika = Applied Mathematical Statistics. Moscow: Fizmatlit, 2012. 816 p. (inRuss.)].
  28. Kruglov A. The History of the Soviet Atomic Industry. London: Taylor and Francis, 2002. 288 p.
  29. Дощенко Н.В., Кисловкая И.Л., Лемберг В.К., Нифатов А.П. Клинико-морфологическая характеристика плутониевого пневмосклероза различных стадий. Бюлл. радиац. медицины. 1967;3:32–46. [Doshchenko N.V., Kislovkaya I.L., Lemberg V.K., Nifatov A.P. Kliniko-morfologicheskaya kharakteristika plutoniyevogo pnevmoskleroza razlichnykh stadiy. Bulletin of Radiation Medicine. 1967;3:32–46 (in Russ.)].
  30. Hahn F.F., Romanov S.A., Guilmette R.A., Nifatov A.P., Zaytseva Y.V., Diel J.H., Allen S.W., Lyovkina Y.V. Distribution of plutonium particles in the lungs of Mayak workers. Radiat. Prot. Dosimy. 2003;105(1-4):81–4. https://doi.org/10.1093/oxfordjournals.rpd.a006326
  31. Age-dependent doses to members of the public from intake of radionuclides: Part 2. Ingestion dose coefficients. A report of a Task Group of Committee 2 of the International Commission on Radiological Protection. Ann. ICRP. 1993;23(3-4):1–167.
  32. Coggle J.E., Lambert B.E., Moores S.R. Radiation effects in the lung. Environ Health Perspect. 1986;70:261–91. https://doi.org/10.1289/ehp.8670261
  33. McDonald S., Rubin P., Phillips T.L., Marks L.B. Injury to the lung from cancer therapy: clinical syndromes, measurable endpoints, and potential scoring systems. Int. J. Radiat. Oncol. Biol. Phys. 1995;31(5):1187–203. https://doi.org/10.1016/0360-3016(94)00429-O
  34. Bentzen S.M., Skoczylas J.Z., Bernier J. Quantitative clinical radiobiology of early and late lung reactions. Int. J. Radiat. Biol. 2000;76(4):453–62. https://doi.org/10.1080/095530000138448
  35. Brooks A.L., Guilmette R.A., Hahn F.F. et al. Distribution and biological effects of inhaled 239Pu(NO3)4 in cynomolgus monkeys. Radiat. Res. 1992;130(1):79–87.
  36. Park J.F., Watson C.R., Buschbom R.L. et al. Biological effects of inhaled 239PuO2 in Beagles. Radiat. Res. 2012;178(5):447–67. https://doi.org/10.1667/RR2504.1
  37. Van der Meeren A., Gremy O., Renault D. et al. Plutonium behavior after pulmonary administration according to solubility properties, and consequences on alveolar macrophage activation. J. Radiat. Res. 2012;53(2):184–94. https://doi.org/10.1269/jrr.11112
  38. Сычугов Г.В., Казачков Е.Л., Азизова Т.В. и др. Иммуноморфологические особенности пневмофиброза у работников плутониевого производства. Уральский мед. журн. 2014;8(122):71–76. [Sychugov G.V., Kazachkov E.L., Azizova T.V. et al. Immunomorphological characteristics of pneumofibrosis at workers of plutonium manufacture. Ural. Med. J. Pathomorphology. 2014;8(122):71–76 (In Russ.)].
  39. Urawa M., Kobayashi T., D'Alessandro-Gabazza C.N. et al. Protein S is protective in pulmonary fibrosis. J. Thromb. Haemost. 2016;14(8):1588–99. https://doi.org/10.1111/jth.13362
  40. Almeida C., Nagarajan D., Tian J. et al. The role of alveolar epithelium in radiation-induced lung injury. PLoS One. 2013;8(1):e53628. https://doi.org/10.1371/journal.pone.0053628
  41. Tabata C., Kadokawa Y., Tabata R. et al. All-trans-retinoic acid prevents radiation- or bleomycin-induced pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2006;174(12):1352–60. https://doi.org/10.1164/rccm.200606-862OC
  42. Madri J.A., Furthmayr H. Collagen polymorphism in the lung. An immunochemical study of pulmonary fibrosis. Hum. Pathol. 1980;11(4):353–66. https://doi.org/10.1016/s0046-8177(80)80031-1
  43. Yoshida S., Haque A., Mizobuchi T. et al. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants. Am. J. Transplant. 2006;6(4):724–35. https://doi.org/10.1111/j.1600-6143.2006.01236.x
  44. Parra E.R., Aguiar A.C. J.r, Teodoro W.R. et al. Collagen V and vascular injury promote lung architectural changes in systemic sclerosis. Clin. Respir. J. 2009;3(3):135–42. https://doi.org/10.1111/j.1752-699X.2008.00118.x
  45. Sullivan J.A., Jankowska-Gan E., Hegde S. et al. Th17 Responses to Collagen Type V, kα1-Tubulin, and Vimentin Are Present Early in Human Development and Persist Throughout Life. Am. J. Transplant. 2017 Apr;17(4):944–956. https://doi.org/10.1111/ajt.14097
  46. Mak K.M., Png C.Y., Lee D.J. Type V Collagen in Health, Disease, and Fibrosis. Anat. Rec. (Hoboken). 2016;299(5):613–29. https://doi.org/10.1002/ar.23330
  47. Kobayashi T., Gabazza E.C., Taguchi O. et al. Type I collagen metabolites as tumor markers in patients with lung carcinoma. Cancer. 1999;85(9):1951–7.
  48. Polette M., Thiblet J., Ploton D. et al. Distribution of a1(IV) and a3(IV) chains of type IV collagen in lung tumours. J. Pathol. 1997;182(2):185–91. https://doi.org/10.1002/(SICI)1096-9896(199706) 182:2<185::AID-PATH828>3.0.CO;2-F
  49. Kim K.K., Kugler M.C., Wolters P.J. et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc. Natl. Acad. Sci. USA. 2006;103(35):13180–5. https://doi.org/10.1073/pnas.0605669103
  50. Dunsmore S.E. Treatment of COPD: a matrix perspective. Int. J. Chron. Obstruct. Pulmon. Dis. 2008;3(1):113–22. https://doi.org/10.2147/copd.s1119
  51. Suki B., Bates J.H. Extracellular matrix mechanics in lung parenchymal diseases. Respir. Physiol. Neurobiol. 2008;163(1-3):33–43. https://doi.org/10.1016/j.resp.2008.03.015
  52. Burgstaller G., Oehrle B., Gerckens M. et al. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur. Respir. J. 2017;50(1):1601805. https://doi.org/10.1183/13993003.01805-2016
  53. Désogère P., Tapias L.F., Hariri L.P. et al. Type I collagen-targeted PET probe for pulmonary fibrosis detection and staging in preclinical models. Sci. Transl. Med. 2017;9(384):eaaf4696. https://doi.org/10.1126/scitranslmed.aaf4696
  54. O'Dwyer D.N., Moore B.B. The role of periostin in lung fibrosis and airway remodeling. Cell Mol. Life Sci. 2017;74(23):4305–4314. https://doi.org/10.1007/s00018-017-2649-z
  55. Jones M.G., Andriotis O.G., Roberts J.J. et al. Nanoscale dysregulation of collagen structure-function disrupts mechano-homeostasis and mediates pulmonary fibrosis. Elife. 2018;7:e36354. https://doi.org/10.7554/eLife.36354
  56. Сагиндикова Г.Е., Коган Е.А., Сатбаева Э.Б., Парамонова Н.Б. Матриксные металлопротеиназы, их ингибиторы и ангиогенез при различных морфологических вариантах предрака легкого у жителей радиоактивно-загрязненных территорий семипалатинской области Казахстана. Арх. патологии. 2008;70(2):21–25. [Sagindikova G.E., Kogan E.A., Satbayeva E.B., Paramonova N.B. Matrix metalloproteinases, their inhibitors and angiogenesis in different morphological types of lung precancer in persons who have long lived in the radioactive substance-polluted area of the Semipalatinsk Region, Kazakhstan. Arkh. Patol. 2008;70(2):21–5 (In Russ.)].
  57. Vafashoar F., Mousavizadeh K., Poormoghim H. et al. Gelatinases Increase in Bleomycin-induced Systemic Sclerosis Mouse Model. Iran. J. Allergy Asthma Immunol. 2019;18(2):182–189.
  58. Summer R., Krishna R., Schriner D. et al. Matrix metalloproteinase activity in the lung is increased in Hermansky-Pudlak syndrome. Orphanet. J. Rare Dis. 2019;14(1):162. https://doi.org/10.1186/s13023-019-1143-0
  59. Adamidis K.N., Kopaka M.E., Petraki C. et al. lomerular expression of matrix metalloproteinases in systemic lupus erythematosus in association with activity index and renal function. Ren. Fail. 2019;41(1):229–237. https://doi.org/10.1080/0886022X.2019.1591998
  60. Thiele N.D., Wirth J.W., Steins D. et al. TIMP-1 is upregulated, but not essential in hepatic fibrogenesis and carcinogenesis in mice. Sci. Rep. 2017;7(1):714. https://doi.org/10.1038/s41598-017-00671-1.
  61. Song T., Dou C., Jia Y. et al. TIMP-1 activated carcinoma-associated fibroblasts inhibit tumor apoptosis by activating SDF1/CXCR4 signaling in hepatocellular carcinoma. Oncotarget. 2015;6(14):12061–79. https://doi.org/10.18632/oncotarget.3616
  62. Yoshiji H., Harris S.R., Raso E. et al. Mammary carcinoma cells over-expressing tissue inhibitor of metalloproteinases-1 show enhanced vascular endothelial growth factor expression. Int. J. Cancer. 1998;75(1):81–7. https://doi.org/10.1002/(sici)1097-0215(19980105) 75:1<81::aid-ijc13>3.0.co;2-g
  63. Кошурникова Н.А., Сокольников М.Э., Фомин Е.П. Избыточный относительный риск заболеваемости раком легкого в зависимости от гистотипа опухоли. Вопр. радиац. безопасности. 2014;4(76):62–69. [Koshurnikova N.A., Sokolnikov M.E., Fomin E.P. Excess relative lung cancer risk depending on the histological type of the tumor. J. Radiat. Saf. Issue. 2014;4(76):62–69 (In Russ.)].
  64. Flechsig P., Dadrich M., Bickelhaupt S. et al. LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-β and BMP-associated proinflammatory and proangiogenic signals. Clin. Cancer Res. 2012;18(13):3616–27. https://doi.org/10.1158/1078-0432.CCR-11-2855

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The use of pseudocolor masks above images highlighting MMP-9 expression in vessel endothelium and lung fiber components of the lung stroma for quantification of metalloproteinase content in a lung tissue section.

Download (611KB)
3. Fig. 2. Expression of collagens type I, IV and V in LF and non-LF specimens. Immunohistochemistry with antibodies against Collagen type I, Collagen type IV, Collagen type V, polymer test-system. Magnification ×50. Scale 500 μm. LF and ППФ denotes plutonium-induced lung fibrosis, non-LF denote lung fibrosis of a different origin, ГС denotes control (no pulmonary pathology).

Download (445KB)
4. Fig. 3. Expression of matrix metalloproteinases and their tissue inhibitors in LFR and non-LFR. Immunohistochemical method with antibodies against MMP-2, MMP-9, TIMP-1, TIMP-2, polymer test system. Magnification ×400. Marker 50 µm. LFR and PPF — radiation pulmonary fibrosis, non-LFR — nonradiative pulmonary fibrosis, GS — comparison group (non-LFR).

Download (480KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».