Transgenerational Effects of Ionizing Radiation on Different Animal Species (Literature Review)
- Authors: Panchenko A.V.1, Drachev I.S.2, Suprunova E.B.2, Pigarev S.E.1
-
Affiliations:
- N.N. Petrov National Medical Research Center of Oncology
- State Scientific Test Research Institute of Military Medicine
- Issue: Vol 65, No 4-5 (2025)
- Pages: 379–405
- Section: General Radiobiology
- URL: https://journal-vniispk.ru/0869-8031/article/view/374119
- DOI: https://doi.org/10.7868/S3034590125040023
- ID: 374119
Cite item
Abstract
About the authors
A. V. Panchenko
N.N. Petrov National Medical Research Center of Oncology
Email: ando_pan@mail.ru
ORCID iD: 0000-0002-5346-7646
St. Petersburg, Russia
I. S. Drachev
State Scientific Test Research Institute of Military Medicine
Email: dr.ingwar@mail.ru
ORCID iD: 0000-0002-1334-211X
St. Petersburg, Russia
E. B. Suprunova
State Scientific Test Research Institute of Military Medicine
Email: esyprynova@mail.ru
ORCID iD: 0009-0008-4356-8380
St. Petersburg, Russia
S. E. Pigarev
N.N. Petrov National Medical Research Center of Oncology
Email: spigarev@scioco.com
ORCID iD: 0000-0002-8171-4261
St. Petersburg, Russia
References
- Бак З., Александер П. Основы радиобиологии. М.: Издательство иностранной литературы, 1963. 500 с.
- Bohn G. Influence des rayons du radium sur les oeufs vierges et fécondes et sur les premiers stades du développement. Comp. Rend. Acad. Sci. Colon. 1903; 136:1085–1086.
- Котеров А.Н. Биологические и медицинские эффекты излучения с низкой ЛПЭ для различных диапазонов доз. Медицинская радиология и радиационная безопасность. 2015; 60(3):5–31.
- Lowe S.A. Ionizing radiation for maternal medical indications. Prenat. Diagn. 2020; 40(9):1150–1155. https://doi.org/10.1002/pd.5592
- Buisset-Goussen A., Goussen B., Della-Vedova C., Galas S., Adam-Guillermin C., Lecomte-Pradines C. Effects of chronic gamma irradiation: a multigenerational study using Caenorhabditis elegans. J. Environ. Radioact. 2014; 137:190–197. https://doi.org/10.1016/j.jenvrad.2014.07.014
- Min H., Sung M., Son M., Kawasaki I., Shim Y.H. Transgenerational effects of proton beam irradiation on Caenorhabditis elegans germline apoptosis. Biochem. Biophys. Res. Commun. 2017; 490(3):608–615. https://doi.org/10.1016/j.bbrc.2017.06.085
- Wang S., Meyer D.H., Schumacher B. Inheritance of paternal DNA damage by histone-mediated repair restriction. Nature. 2023; 613(7943):365–374. https://doi.org/10.1038/s41586-022-05544-w
- Hertel-Aas T., Brunborg G., Jaworska A., Salbu B., Oughton D.H. Effects of different gamma exposure regimes on reproduction in the earthworm Eisenia fetida (Oligochaeta). Sci. Total Environ. 2011; 412–413: 138–147. https://doi.org/10.1016/j.scitotenv.2011.09.037
- Sarapultseva E.I., Bychkovskaya I.B. Peculiar low-radiation effects as a risk factor: assessment of organism viability in model experiments with Daphnia magna. Int. J. Low. Radiat. 2010; 7(1):1. https://doi.org/10.1504/IJLR.2010.032766
- Sarapultseva E.I., Gorski A.I. Low-dose γ-irradiation affects the survival of exposed Daphnia and their offspring. Dose-Response. Publ. Int. Hormesis. Soc. 2013; 11(4):460–468. https://doi.org/10.2203/dose-response.12-033.Sarapultseva
- Сарапульцева Е.И., Мелехова О.П., Коссова Г.В., Иголкина Ю.В., Алексеева Н.В. Свободнорадикальные реакции при γ-облучении дафний in vivo в малых дозах. Радиационная биология. Радиоэкология. 2014; 54(3):305–308. https://doi.org/10.7868/S0869803114030138
- Sarapultseva E.I., Dubrova Y.E. The long-term effects of acute exposure to ionising radiation on survival and fertility in Daphnia magna. Environ. Res. 2016; 150: 138–143. https://doi.org/10.1016/j.envres.2016.05.046
- Parisot F., Bourdineaud J.P., Plaire D., AdamGuillermin C., Alonzo F. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations. Aquat Toxicol. 2015; 163:27–36. https://doi.org/10.1016/j.aquatox.2015.03.002
- Trijau M., Asselman J., Armant O., Adam-Guillermin C., De Schamphelaere K.A.C., Alonzo F. Transgenerational DNA Methylation Changes in Daphnia magna Exposed to Chronic γ Irradiation. Environ. Sci. Technol. 2018; 52(7):4331–4339. https://doi.org/10.1021/acs.est.7b05695
- Fuciarelli T.M., Rollo C.D. Trans-generational impacts of paternal irradiation in a cricket: Damage, lifehistory features and hormesis in F1 offspring. DoseResponse. 2020; 18(4):155932582098321. https://doi.org/10.1177/1559325820983214
- Fuciarelli T., Rollo C. Corrigendum to trans-generational impacts of paternal irradiation in a cricket: Damage, life-history features and hormesis in F1 offspring. Dose-Response. 2022; 20(4):155932582211347. https://doi.org/10.1177/15593258221134746
- Li X., Rollo C.D. Radiation induces stress and transgenerational impacts in the cricket, Acheta domesticus. Int. J. Radiat. Biol. 2022; 98(6):1098–1105. https://doi.org/10.1080/09553002.2021.1872816
- Hancock S., Vo N.T.K., Omar-Nazir L., et al. Transgenerational effects of historic radiation dose in pale grass blue butterflies around Fukushima following the Fukushima Dai-ichi Nuclear Power Plant meltdown accident. Environ. Res. 2019; 168:230–240. https://doi.org/10.1016/j.envres.2018.09.039
- Hiyama A., Nohara C., Kinjo S., et al. The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Sci. Rep. 2012; 2(1):570. https://doi.org/10.1038/srep00570
- Sangsuwan T., Mannervik M., Haghdoost S. Transgenerational effects of gamma radiation dose and dose rate on Drosophila flies irradiated at an early embryonal stage. Mutat. Res. Toxicol. Environ. Mutagen. 2022; 881:503523. https://doi.org/10.1016/j.mrgentox.2022.503523
- Yushkova E. Genetic mechanisms of formation of radiation-induced instability of the genome and its transgenerational effects in the descendants of chronically irradiated individuals of Drosophila melanogaster. Radiat. Environ. Biophys. 2020; 59(2):221–236.https://doi.org/10.1007/s00411-020-00833-2
- Yushkova E. Involvement of DNA repair genes and system of radiation-induced activation of transposons in formation of transgenerational effects. Front. Genet. 2020; 11:596947. https://doi.org/10.3389/fgene.2020.596947
- Yushkova E., Bashlykova L. Transgenerational effects in offspring of chronically irradiated populations of Drosophila melanogaster after the Chernobyl accident. Environ. Mol. Mutagen. 2021; 62(1):39–51. https://doi.org/10.1002/em.22416
- Yushkova E. Radiobiological features in offspring of natural populations of Drosophila melanogaster after Chernobyl accident. Environ. Mol. Mutagen. 2022; 63(2):84–97. https://doi.org/10.1002/em.22476
- Yushkova E. Contribution of transposable elements to transgenerational effects of chronic radioactive exposure of natural populations of Drosophila melanogaster living for a long time in the zone of the Chernobyl nuclear disaster. J. Environ. Radioact. 2022; 251–252:106945. https://doi.org/10.1016/j.jenvrad.2022.106945
- Anders A., Petry H., Fleming C., et al. Increasing melanoma incidence: Putatively Explainable by retrotransposons experimental contributions of the Xiphophorine Gordon-Kosswig melanoma system. Pigment Cell Res. 1994; 7(6):433–450. https://doi.org/10.1111/j.1600-0749.1994.tb00073.x
- Shimada A., Shima A. High incidence of mosaic mutations induced by irradiating paternal germ cells of the medaka fish, Oryzias latipes. Mutat. Res. Toxicol. Environ. Mutagen. 2001; 495(1–2):33–42. https://doi.org/10.1016/S1383-5718(01)00193-0
- Shimada A., Shima A. Transgenerational genomic instability as revealed by a somatic mutation assay using the medaka fish. Mutat. Res. Mol. Mech. Mutagen. 2004; 552(1–2):119–124. https://doi.org/10.1016/j.mrfmmm.2004.06.007
- Shimada A., Eguchi H., Yoshinaga S., Shima A. Doserate effect on transgenerational mutation frequencies in spermatogonial stem cells of the medaka fish. Radiat. Res. 2005; 163(1):112–114. https://doi.org/10.1667/RR3266
- Grygoryev D., Moskalenko O., Hinton T.G., Zimbrick J.D. DNA damage caused by chronic transgenerational exposure to low dose gamma radiation in medaka fish (Oryzias latipes). Radiat. Res. 2013; 180(3): 235–246. https://doi.org/10.1667/RR3190.1
- Smith R.W., Seymour C.B., Moccia R.D., Mothersill C.E. Irradiation of rainbow trout at early life stages results in trans-generational effects including the induction of a bystander effect in non-irradiated fish. Environ. Res. 2016; 145:26–38. https://doi.org/10.1016/j.envres.2015.11.019
- Hurem S., Gomes T., Brede D.A., et al. Parental gamma irradiation induces reprotoxic effects accompanied by genomic instability in zebrafish (Danio rerio) embryos. Environ. Res. 2017; 159:564–578. https://doi.org/10.1016/j.envres.2017.07.053
- Møller A.P., Mousseau T.A., De Lope F., Saino N. Elevated frequency of abnormalities in barn swallows from Chernobyl. Biol. Lett. 2007; 3(4):414–417. https://doi.org/10.1098/rsbl.2007.0136
- Bonisoli-Alquati A., Voris A., Mousseau T.A., Møller A.P., Saino N., Wyatt M.D. DNA damage in barn swallows (Hirundo rustica) from the Chernobyl region detected by use of the comet assay. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2010; 151(3):271–277. https://doi.org/10.1016/j.cbpc.2009.11.006
- Omar-Nazir L., Shi X., Moller A., et al. Long-term effects of ionizing radiation after the Chernobyl accident: Possible contribution of historic dose. Environ. Res. 2018; 165:55–62. https://doi.org/10.1016/j.envres.2018.04.005
- Lüning K.G., Frölén H., Nilsson A. Genetic effects of 239Pu salt injections in male mice. Mutat. Res. 1976; 34(3):539–542. https://doi.org/10.1016/0027-5107(76)90229-3
- Nomura T. Parental exposure to X rays and chemicals induces heritable tumours and anomalies in mice. Nature. 1982; 296(5857):575–577. https://doi.org/10.1038/296575a0
- Vorobtsova I.E., Aliyakparova L.M., Anisimov V.N. Promotion of skin tumors by 12-O-tetradecanoylphorbol-13-acetate in two generations of descendants of male mice exposed to X-ray irradiation. Mutat. Res. Mol. Mech. Mutagen. 1993; 287(2):207–216. https://doi.org/10.1016/0027-5107(93)90013-6
- Cattanach B.M., Patrick G., Papworth D., et al. Investigation of lung tumour induction in BALB/cJ mice following paternal X-irradiation. Int. J. Radiat. Biol. 1995; 67(5):607–615. https://doi.org/10.1080/09553009514550721
- Cattanach B.M., Papworth D., Patrick G., et al. Investigation of lung tumour induction in C3HHeH mice, with and without tumour promotion with urethane, following paternal X-irradiation. Mutat. Res. Mol. Mech. Mutagen. 1998; 403(1–2):1–12. https://doi.org/10.1016/S0027-5107(97)00322-9
- Luke G.A., Riches A.C., Bryant P.E. Genomic instability in haematopoietic cells of F1 generation mice of irradiated male parents. Mutagenesis. 1997; 12(3):147–152. https://doi.org/10.1093/mutage/12.3.147
- Lord B., Woolford L., Wang L., et al. Tumour induction by methyl-nitroso-urea following preconceptional paternal contamination with plutonium-239. Br. J. Cancer. 1998; 78(3):301–311. https://doi.org/10.1038/bjc.1998.491
- Pils S., Müller W.U., Streffer C. Lethal and teratogenic effects in two successive generations of the HLG mouse strain after radiation exposure of zygotes — association with genomic instability? Mutat. Res. Mol. Mech. Mutagen. 1999; 429(1):85–92. https://doi.org/10.1016/S0027-5107(99)00101-3
- Mohr U. Possible carcinogenic effects of X-rays in a transgenerational study with CBA mice. Carcinogenesis. 1999; 20(2):325–332. https://doi.org/10.1093/carcin/20.2.325
- Carls N., Schiestl R.H. Effect of ionizing radiation on transgenerational appearance of pun reversions in mice. Carcinogenesis. 1999; 20(12): 2351–2354. https://doi.org/10.1093/carcin/20.12.2351
- Hoyes K.P., Lord B.I., McCann C., Hendry J.H., Morris I.D. Transgenerational effects of preconception paternal contamination with 55Fe. Radiat. Res. 2001; 156(5):488–494. https://doi.org/10.1667/0033-7587(2001)156[0488:TEOPPC]2.0.CO;2
- Baulch J.E., Raabe O.G., Wiley L.M. Heritable effects of paternal irradiation in mice on signaling protein kinase activities in F3 offspring. Mutagenesis. 2001; 16(1):17–23. https://doi.org/10.1093/mutage/16.1.17
- Barber R., Plumb M.A., Boulton E., Roux I., Dubrova Y.E. Elevated mutation rates in the germ line of firstand second-generation offspring of irradiated male mice. Proc. Natl. Acad. Sci. 2002; 99(10):6877–6882. https://doi.org/10.1073/pnas.102015399
- Dasenbrock C., Tillmann T., Ernst H., et al. Maternal effects and cancer risk in the progeny of mice exposed to X-rays before conception. Exp. Toxicol. Pathol. 2005; 56(6):351–360. https://doi.org/10.1016/j.etp.2004.12.001
- Ryabokon N.I., Goncharova R.I. Transgenerational accumulation of radiation damage in small mammals chronically exposed to Chernobyl fallout. Radiat. Environ. Biophys. 2006; 45(3):167–177. https://doi.org/10.1007/s00411-006-0054-3
- Barber R.C., Hickenbotham P., Hatch T., et al. Radiation-induced transgenerational alterations in genome stability and DNA damage. Oncogene. 2006; 25(56): 7336–7342. https://doi.org/10.1038/sj.onc.1209723
- Koturbash I., Baker M., Loree J., et al. Epigenetic dysregulation underlies radiation-induced transgenerational genome instability in vivo. Int. J. Radiat. Oncol. 2006; 66(2):327–330. https://doi.org/10.1016/j.ijrobp.2006.06.012
- Hatch T., Derijck A.A.H.A., Black P.D., van der Heijden G.W., de Boer P., Dubrova Y.E. Maternal effects of the scid mutation on radiation-induced transgenerational instability in mice. Oncogene. 2007; 26(32):4720–4724. https://doi.org/10.1038/sj.onc.1210253
- Barber R.C., Hardwick R.J., Shanks M.E., et al. The effects of in utero irradiation on mutation induction and transgenerational instability in mice. Mutat. Res. Mol. Mech. Mutagen. 2009; 664(1–2):6–12. https://doi.org/10.1016/j.mrfmmm.2009.01.011
- Watanabe H., Toyoshima M., Ishikawa M., Kamiya K. Paternal monoenergetic neutron exposure results in abnormal sperm, and embryonal lethality and transgenerational tumorigenesis in mouse F1 offspring. Oncol. Rep. 2010; 23(5). https://doi.org/10.3892/or_00000771
- Adiga S.K., Upadhya D., Kalthur G., Bola Sadashiva S.R., Kumar P. Transgenerational changes in somatic and germ line genetic integrity of first-generation offspring derived from the DNA damaged sperm. Fertil. Steril. 2010; 93(8):2486–2490. https://doi.org/10.1016/j.fertnstert.2009.06.015
- Jacquet P., Buset J., Neefs M., et al. Transgenerational developmental effects and genomic instability after X-irradiation of preimplantation embryos: Studies on two mouse strains. Mutat. Res. Mol. Mech. Mutagen., 2010; 687(1–2):54–62. https://doi.org/10.1016/j.mrfmmm.2010.01.013
- Filkowski J.N., Ilnytskyy Y., Tamminga J., et al. Hypomethylation and genome instability in the germline of exposed parents and their progeny is associated with altered miRNA expression. Carcinogenesis. 2010; 31(6):1110–1115. https://doi.org/10.1093/carcin/bgp300
- Miller A.C., Stewart M., Rivas R. Preconceptional paternal exposure to depleted uranium: Transmission of genetic damage to offspring. Health Phys. 2010; 99(3): 371–379. https://doi.org/10.1097/HP.0b013e3181cfe0dd
- Lomaeva M.G., Vasil’eva G.V., Fomenko L.A., Antipova V.N., Gaziev A.I., Bezlepkin V.G. Increased genomic instability in somatic cells of the progeny of female mice exposed to acute X-radiation in the preconceptional period. Russian Journal of Genetics. 2011; 47(10):1221–1226. https://doi.org/10.1134/S1022795411100115
- Mughal S.K., Myazin A.E., Zhavoronkov L.P., Rubanovich A.V., Dubrova Y.E. The dose and dose-rate effects of paternal irradiation on transgenerational instability in mice: A radiotherapy connection. PLoS ONE. 2012; 7(7):e41300. https://doi.org/10.1371/journal.pone.0041300
- Abouzeid Ali H.E., Barber R.C., Dubrova Y.E. The effects of maternal irradiation during adulthood on mutation induction and transgenerational instability in mice. Mutat. Res. Mol. Mech. Mutagen. 2012; 732(1–2): 21–25. https://doi.org/10.1016/j.mrfmmm.2012.01.003
- Paris L., Giardullo P., Leonardi S., et al. Transgenerational inheritance of enhanced susceptibility to radiation-induced medulloblastoma in newborn Ptch1+/– mice after paternal irradiation. Oncotarget. 2015; 6(34):36098–36112. https://doi.org/10.18632/oncotarget.5553
- Gomes A.M.G.F., Barber R.C., Dubrova Y.E. Paternal irradiation perturbs the expression of circadian genes in offspring. Mutat. Res. Mol. Mech. Mutagen. 2015; 775:33–37. https://doi.org/10.1016/j.mrfmmm.2015.03.007
- Ломаева М.Г., Фоменко Л.А., Васильева Г.В., Безлепкин В.Г. Тканеспецифические изменения уровня полиморфизма простых повторов в ДНК потомков разного пола, рожденных от облученных самцов или самок мышей. Радиационная биология. Радиоэкология. 2016; 56(2):149–155. https://doi.org/10.7868/S0869803116020089
- Asakawa J., Kodaira M., Miura A., et al. Genomewide deletion screening with the array CGH method in mouse offspring derived from irradiated spermatogonia indicates that mutagenic responses are highly variable among genes. Radiat. Res. 2016; 186(6):568. https://doi.org/10.1667/RR14402.1
- Satoh Y., Asakawa J., Nishimura M., et al. Characteristics of induced mutations in offspring derived from irradiated mouse spermatogonia and mature oocytes. Sci. Rep. 2020; 10(1):37. https://doi.org/10.1038/s41598-019-56881-2
- Suman S., Kumar S., Moon B.H., Fornace A.J., Kallakury B.V.S., Datta K. Increased transgenerational intestinal tumorigenesis in offspring of ionizing radiation exposed parent APC1638N/+ mice. J. Cancer. 2017; 8(10):1769–1773. https://doi.org/10.7150/jca.17803
- Ogura K., Ayabe Y., Harada C., Tanaka I.B., Tanaka S., Komura J. Increased frequency of copy number variations revealed by array comparative genomic hybridization in the offspring of male mice exposed to low dose-rate ionizing radiation. Int. J. Mol. Sci. 2021; 22(22):12437. https://doi.org/10.3390/ijms222212437
- Панченко А.В., Пигарев С.Е., Федорос Е.И. и др. Трансгенерационный канцерогенез, индуцированный уретаном, у потомков мышей-самцов BALB/c, подвергнутых общему равномерному гамма-облучению. Вопросы онкологии. 2023; 69(2):246–252.
- Tanaka I.B. 3rd, Tanaka S., Nakahira R., Komura J.I. Transgenerational effects on lifespan and pathology of paternal pre-conceptional exposure to continuous lowdose-rate gamma rays in C57BL/6J mice. Radiat. Res. 2024; 202(6):870–887. https://doi.org/10.1667/RADE-24-00093.1
- Seino R., Kubo H., Nishikubo K., Fukunaga H. Radiation-induced impacts on mitochondrial DNA and the transgenerational genomic instability. Environ. Int. 2025; 196:109315. https://doi.org/10.1016/j.envint.2025.109315.
- Kropácová K., Slovinská L., Miúrová E. Cytogenetic changes in the liver of progeny of irradiated male rats. J. Radiat. Res. (Tokyo). 2002; 43(2):125–125. https://doi.org/10.1269/jrr.43.125
- Bálentová S., Račeková E., Mišúrová E. Effect of paternal exposure to gamma rays on juvenile rat forebrain. Neurotoxicol. Teratol. 2007; 29(4):521–526. https://doi.org/10.1016/j.ntt.2007.03.063
- Bálentová S., Slovinská L., Misúrová E., Rybárová S., Adamkov M. Effect of paternal rat irradiation transmitted to the progeny during prenatal development. Folia Biol. (Praha). 2008; 54(5):151–156.
- Tamminga J., Koturbash I., Baker M., et al. Paternal cranial irradiation induces distant bystander DNA damage in the germline and leads to epigenetic alterations in the offspring. Cell Cycle. 2008; 7(9):1238–1245. https://doi.org/10.4161/cc.7.9.5806
- Camats N., García F., Parrilla J.J., Calaf J., Martín M., Caldés M.G. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens. Mutat. Res. Mol. Mech. Mutagen. 2008; 640(1–2):16–26. https://doi.org/10.1016/j.mrfmmm.2007.11.009
- Chumak A.A., Talko V.V., Atamanyuk N.P., et al. Transgeneration effects of N-stearoylethanolamine in irradiated rats. Probl. Radiac. Med. Radiobiol. 2017; 22: 270–281.
- Awa A.A., Bloom A.D., Yoshida M.C., Neriishi S., Archer P.G. Cytogenetic Study of the Offspring of Atom Bomb Survivors. Nature. 1968; 218(5139):367–368. https://doi.org/10.1038/218367a0
- Black D. Investigation of the possible increased incidence of cancer in west Cumbria. Report of the independent advisory group. London: HMSO, 1984. 104 p.
- Kinlen L.J., Clarke K., Balkwill A. Paternal preconceptional radiation exposure in the nuclear industry and leukaemia and non-Hodgkin’s lymphoma in young people in Scotland. BMJ. 1993; 306(6886):1153–1158. https://doi.org/10.1136/bmj.306.6886.1153
- McLaughlin J.R., King W.D., Anderson T.W., Clarke E.A., Ashmore J.P. Paternal radiation exposure and leukaemia in offspring: The Ontario case-control study. BMJ. 1993; 307(6910):959–966. https://doi.org/10.1136/bmj.307.6910.959
- Draper G.J., Little M.P., Sorahan T., et al. Cancer in the offspring of radiation workers: a record linkage study. BMJ. 1997; 315(7117):1181–1188.
- Boice J.D., Tawn E.J., Winther J.F., et al. Genetic effects of radiotherapy for childhood cancer. Health Phys. 2003; 85(1):65–80. https://doi.org/10.1097/00004032-200307000-00013
- Parker L., Pearce M.S., Dickinson H.O., Aitkin M., Craft A.W. Stillbirths among offspring of male radiation workers at Sellafield nuclear reprocessing plant. The Lancet. 1999; 354(9188):1407–1414. https://doi.org/10.1016/S0140-6736(99)04138-0
- Doyle P., Maconochie N., Roman E., Davies G., Smith P.G., Beral V. Fetal death and congenital malformation in babies born to nuclear industry employees: report from the nuclear industry family study. The Lancet. 2000; 356(9238):1293–1299. https://doi.org/10.1016/S0140-6736(00)02812-9
- Little M.P. A comparison of the risk of stillbirth associated with paternal pre-conception irradiation in the Sellafield workforce with that of stillbirth and untoward pregnancy outcome among Japanese atomic bomb survivors. J. Radiol. Prot. 1999; 19(4):361–373. https://doi.org/10.1088/0952-4746/19/4/307
- Dubrova Y.E., Newmann R., Neil D.L., et al. Effects of radiation on children. Nature. 1996; 383(6597):226–226. https://doi.org/10.1038/383226b0
- Dubrova Y.E., Nesterov V.N., Krouchinsky N.G., et al. Further evidence for elevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident. Mutat. Res. 1997; 381(2):267–278. https://doi.org/10.1016/s0027-5107(97)00212-1
- Dubrova Y.E., Bersimbaev R.I., Djansugurova L.B., et al. Nuclear weapons tests and human germline mutation rate. Science. 2002; 295(5557):1037. https://doi.org/10.1126/science.1068102
- Kiuru A., Auvinen A., Luokkamäki M., et al. Hereditary minisatellite mutations among the offspring of Estonian Chernobyl cleanup workers. Radiat. Res. 2003; 159(5):651–655. https://doi.org/10.1667/0033-7587(2003)159[0651:HMMATO]2.0.CO;2
- Da Cruz A.D., de Melo e Silva D., da Silva C.C., et al. Microsatellite mutations in the offspring of irradiated parents 19 years after the Cesium-137 accident. Mutat. Res. Toxicol. Environ. Mutagen. 2008; 652(2):175–179. https://doi.org/10.1016/j.mrgentox.2008.02.002
- Livshits L.A., Malyarchuk S.G., Lukyanova E.M., et al. Children of Chernobyl cleanup workers do not show elevated rates of mutations in minisatellite alleles. Radiat. Res. 2001; 155(1):74–80. https://doi.org/10.1667/0033-7587(2001)155[0074:COCCWD]2.0.CO;2
- Kodaira M., Satoh C., Hiyama K., Toyama K. Lack of effects of atomic bomb radiation on genetic instability of tandem-repetitive elements in human germ cells. Am. J. Hum. Genet. 1995; 57(6):1275–1283.
- May C.A., Tamaki K., Neumann R., et al. Minisatellite mutation frequency in human sperm following radiotherapy. Mutat. Res. Mol. Mech. Mutagen. 2000; 453(1):67–75. https://doi.org/10.1016/S0027-5107(00)00085-3
- Tawn E.J., Whitehouse C.A., Winther J.F., et al. Chromosome analysis in childhood cancer survivors and their offspring — No evidence for radiotherapy-induced persistent genomic instability. Mutat. Res. Toxicol. Environ. Mutagen. 2005; 583(2):198–206. https://doi.org/10.1016/j.mrgentox.2005.03.007
- Friedman D.L., Whitton J., Leisenring W., et al. Subsequent neoplasms in 5-year survivors of childhood cancer: The childhood cancer survivor study. J. Natl. Cancer. Inst. 2010; 102(14):1083–1095. https://doi.org/10.1093/jnci/djq238
- Rees G.S., Trikic M.Z., Winther J.F., et al. A pilot study examining germline minisatellite mutations in the offspring of Danish childhood and adolescent cancer survivors treated with radiotherapy. Int. J. Radiat. Biol. 2006; 82(3):153–160. https://doi.org/10.1080/09553000600640538
- Hamada A., Takamura N., Meirmanov S., et al. No evidence of radiation risk for thyroid gland among schoolchildren around Semipalatinsk nuclear testing site. Endocr. J. 2003; 50(1):85–89. https://doi.org/10.1507/endocrj.50.85
- Сусков И.И., Агаджанян А.В., Кузьмина Н.С. и др. Проблема трансгенерационного феномена геномной нестабильности у больных детей разных возрастных групп после аварии на ЧАЭС. Радиационная биология. Радиоэкология. 2006; 46(4):466–474.
- Сусков И.И., Кузьмина Н.С., Сускова В.С., Агаджанян А.В., Рубанович А.В. Индивидуальные особенности трансгенерационной геномной нестабильности у детей ликвидаторов последствий аварии на ЧАЭС (цитогенетические и иммуногенетические показатели). Радиационная биология. Радиоэкология. 2008; 48(3):278–286.
- Аклеев А.В., Алещенко А.В., Готлиб В.Я. и др. Адаптивный ответ у потомков первого поколения, родители которых подверглись хроническому облучению. Радиационная биология. Радиоэкология. 2007; 47(5):550–557.
- Ахмадуллина Ю.Р., Аклеев А.В. Адаптивный ответ у потомков первого поколения, отцы которых подверглись хроническому радиационному воздействию. Вестник Челябинского государственного педагогического университета. 2013; (12–1): 174–182.
- Aghajanyan A., Suskov I. Transgenerational genomic instability in children of irradiated parents as a result of the Chernobyl Nuclear Accident. Mutat. Res. Mol. Mech. Mutagen. 2009; 671(1–2):52–57. https://doi.org/10.1016/j.mrfmmm.2009.08.012
- Agadzhanian A.V., Suskov I.I. Genomic instability in chidren born after the Chernobyl nuclear accident (in vivo and in vitro studies). Russian Journal of Genetics. 2010; 46(6):740–749. https://doi.org/10.1134/S1022795410060153
- Aghajanyan A., Kuzmina N., Sipyagyna A., Baleva L., Suskov I. Analysis of genomic instability in the offspring of fathers exposed to low doses of ionizing radiation. Environ. Mol. Mutagen. 2011; 52(7):538–546. https://doi.org/10.1002/em.20655
- Безлепкин В.Г., Кириллова Е.Н., Захарова М.Л. и др. Отдаленные и трансгенерационные молекулярно-генетические эффекты пролонгированного воздействия ионизирующей радиации у работников предприятия ядерной промышленности. Радиационная биология. Радиоэкология. 2011; 51(1):20–32.
- Bazyka D., Hatch M., Gudzenko N., et al. Field study of the possible effect of parental irradiation on the germline of children born to cleanup workers and evacuees of the Chornobyl nuclear accident. Am. J. Epidemiol. 2020; 189(12):1451–1460. https://doi.org/10.1093/aje/kwaa095
- Jordan B. Les gènes des enfants de Tchernobyl: Chroniques génomiques. médecine/sciences. 2021; 37(8–9): 802–805. https://doi.org/10.1051/medsci/2021107
- Morgan W.F. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation? Oncogene. 2003; 22(45):7094–7099. https://doi.org/10.1038/sj.onc.1206992
- Limoli C.L., Kaplan M.I., Phillips J.W., Adair G.M., Morgan W.F. Differential induction of chromosomal instability by DNA strand-breaking agents. Cancer Res. 1997; 57(18):4048–4056.
- Dubrova Y.E., Hickenbotham P., Glen C.D., Monger K., Wong H., Barber R.C. Paternal exposure to ethylnitrosourea results in transgenerational genomic instability in mice. Environ. Mol. Mutagen. 2008; 49(4):308–311. https://doi.org/10.1002/em.20385
- Baulch J.E., Aypar U., Waters K.M., Yang A.J., Morgan W.F. Genetic and epigenetic changes in chromosomally stable and unstable progeny of irradiated cells. PLoS ONE. 2014; 9(9):e107722. https://doi.org/10.1371/journal.pone.0107722
- Huumonen K., Korkalainen M., Viluksela M., Lahtinen T., Naarala J., Juutilainen J. Role of microRNAs and DNA methyltransferases in transmitting induced genomic instability between cell generations. Front. Public. Health. 2014; 2. https://doi.org/10.3389/fpubh.2014.00139
- Tamminga J., Kovalchuk O. Role of DNA damage and epigenetic DNA methylation changes in radiation-induced genomic instability and bystander effects in germline in vivo. Curr. Mol. Pharmacol. 2011; 4(2): 115–125. https://doi.org/10.2174/1874467211104020115
- Lassi Z.S., Imam A.M., Dean S.V., Bhutta Z.A. Preconception care: caffeine, smoking, alcohol, drugs and other environmental chemical/radiation exposure. Reprod. Health. 2014; 11(Suppl 3):S6. https://doi.org/10.1186/1742-4755-11-S3-S6
- The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann. ICRP. 2007; 37(2–4):9–34. https://doi.org/10.1016/j.icrp.2007.10.003
- Mikhalevich L.S., De Zwart F.A., Perepetskaya G.A., Chebotareva N.V., Mikhalevich E.A., Tates A.D. Radiation effects in lymphocytes of children living in a Chernobyl contaminated region of Belarus. Int. J. Radiat. Biol. 2000; 76(10):1377–1385. https://doi.org/10.1080/09553000050151655
- Nomura T., Nakajima H., Ryo H., et al. Transgenerational transmission of radiation- and chemically induced tumors and congenital anomalies in mice: studies of their possible relationship to induced chromosomal and molecular changes. Cytogenet. Genome Res. 2004; 104(1–4):252–260. https://doi.org/10.1159/000077499
- Воробцова И.Е. Трансгенерационная передача радиационно-индуцированной нестабильности генома и предрасположенности к канцерогенезу. Вопросы онкологии. 2008; 54(4): 490–493.
Supplementary files

