ПРОАРИТМИЧЕСКАЯ МЕХАНОМОДУЛЯЦИЯ ХОЛИНЕРГИЧЕСКОЙ ЧУВСТВИТЕЛЬНОСТИ СТРУКТУР ПРАВОГО ПРЕДСЕРДИЯ У НОРМО- И ГИПЕРТЕНЗИВНЫХ КРЫС
- Авторы: Егоров Ю.В1, Кузьмин В.С1,2
-
Учреждения:
- Национальный медицинский исследовательский центр кардиологии им. академика Е.И. Чазова
- Московский государственный университет им. М.В. Ломоносова
- Выпуск: Том 111, № 11 (2025)
- Страницы: 1828-1843
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://journal-vniispk.ru/0869-8139/article/view/355691
- DOI: https://doi.org/10.7868/S2658655X25110094
- ID: 355691
Цитировать
Аннотация
Артериальная гипертензия (АГ) является ведущим модифицирующим фактором риска смертности от сердечно-сосудистых заболеваний. Системная или легочная АГ также служит значимым фактором, стимулирующим возникновение фибрилляции предсердий (ФП). Патофизиологические механизмы, лежащие в основе взаимоусиливающей связи между АГ и ФП, многогранны, обусловлены структурным, биохимическим и электрическим ремоделированием предсердий. Около 20% случаев ФП обусловлены возникновением эктопической активности в структурах правого предсердия (ПП), включающего естественный доминантный ритмоводитель сердца – синоатриальный узел (САУ), а также аритмогенный миокард стенки полых вен. Механизмы, стимулирующие возникновение профибрилляторных очагов в правом предсердии, при механическом воздействии, вызванном АГ, остаются малоизученными. Целью данной работы стало исследование проаритмической механомодуляции электрофизиологических свойств уязвимых зон миокарда ПП, а также восприимчивости к холинергическим воздействиям. Эксперименты проводили с использованием изолированных тканевых препаратов ПП крыс стока Wistar (400 ± 50 г, n = 16), а также спонтанно-гипертензивных крыс стока SHR (САД: 180–220 мм рт. ст., 300 ± 50 г, n = 10), включающих сино-атриальный узел (САУ), устье и дистальную часть верхней полой вены (ВПВ) и демонстрирующих автоматическую активность. С помощью техники многоканальных микроэлектродных отведений проводили одновременную регистрацию потенциала покоя и спонтанных потенциалов действия (ПД) в предсердной и дистальной части ВПВ в контрольных условиях, а также при механическом нагружении/растяжении, сопровождаемом действием ацетилхолина (АЦХ). Длительность ПД в ВПВ гипертензивных крыс существенно меньше, чем у нормотензивных. Частота спонтанных ПД в САУ крыс SHR ниже, чем у Wistar. Отрицательный хронотропный эффект, вызываемый АЦХ у гипертензивных крыс, значимо больше, чем у нормотензивных. Механическое нагружение/растяжение вызывает деполяризацию (до –60 ± 5 мВ), снижение амплитуды ПД, подавление проведения возбуждения и блоки проведения возбуждения в ВПВ. Вышеуказанные эффекты в ВПВ крыс SHR развиваются при существенно меньшем механическом воздействии, чем у крыс Wistar. Механическое нагружение/растяжение увеличивает синусовый ритм в препаратах нормотеизивных крыс (длина цикла: −14 ± 3%, n = 16, p < 0.01), но вызывает его снижение в препаратах крыс SHR (+20 ± 9%, p < 0.01). Механомодуляция усиливает отрицательный хронотропный эффект АЦХ. Это усиление существенно более выражено у крыс SHR, чем у нормотеизивных животных: при нагружении/растяжении АЦХ подавляет синусовый ритм в 100% экспериментов у SHR и только в 50% у нормотеизивных крыс. В контрольных условиях миокард ПП нормотеизивных крыс и крыс SHR демонстрирует различные биоэлектрические свойства и разную чувствительность к АЦХ. САУ и ВПВ у крыс SHR более чувствительны к механомодуляции. Механическое растяжение/нагружение усиливает чувствительность САУ к холинергической стимуляции.
Об авторах
Ю. В Егоров
Национальный медицинский исследовательский центр кардиологии им. академика Е.И. Чазова
Email: knowledge_spirii@mail.ru
Москва, Россия
В. С Кузьмин
Национальный медицинский исследовательский центр кардиологии им. академика Е.И. Чазова; Московский государственный университет им. М.В. ЛомоносоваМосква, Россия; Москва, Россия
Список литературы
- Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quinlou G, Garrique S, LeMouroux A, LeMetayer P, Clementy J (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339: 659–666.
- Huang YS, Pak HN, Hiroshima K, Yamaguchi T, Chen YL, Fukaya H, Soejima K, Yan BP, Morishima I, Shizuta S, Okubo K, Zheng Q, Choi JI, Jiang C, Ieda M, Horvath EE, Lo LW (2024) High-density mapping in catheter ablation for atrial fibrillation in Asia Pacific region: An observational study. J Arrhythm 41(1): e13168. https://doi.org/10.1002/joa3.13168
- Inamura Y, Nitta J, Inaba O, Sato A, Takamiya T, Murata K, Ikenouchi T, Kono T, Matsumura Y, Takahashi Y, Goya M, Sasano T (2021) Presence of non-pulmonary vein foci in patients with atrial fibrillation undergoing standard ablation of pulmonary vein isolation: Clinical characteristics and long-term ablation outcome. Int J Cardiol Heart Vasc 32: 100717. https://doi.org/10.1016/j.ijcha.2021.100717
- Egorov YV, Lang D, Tyan L, Turner D, Lim E, Piro ZD, Hernandez JJ, Lodin R, Wang R, Schmuck EG, Raval AN, Ralph CJ, Kamp TJ, Rosensthraukh LV, Glukhov AV (2019) Caveolae-Mediated Activation of Mechanosensitive Chloride Channels in Pulmonary Veins Triggers Atrial Arrhythmogenesis. J Am Heart Assoc 8(20): e012748. https://doi.org/10.1161/JAHA.119.012748
- Egorov YV, Rosensthraukh LV, Glukhov AV (2020) Arrhythmogenic Interaction between Sympathetic Tone and Mechanical Stretch in Rat Pulmonary Vein Myocardium. Front Physiol 11: 237. https://doi.org/10.3389/fphys.2020.00237
- Bainbridge FA (1915) The influence of venous filling upon the rate of the heart. J Physiol 50: 65–84. https://doi.org/10.1113/jphysiol.1915.sp001736
- Brooks CM, Lu HH, Lange G, Mangi R, Shaw RB, Geody K (1966) Effects of localized stretch of the sinoatrial node region of the dog heart. Am J Physiol 211: 1197–1202. https://doi.org/10.1152/ajplegacy.1966.211.5.1197
- James TN, Nadeau RA (1963) Sinus bradycardia during injections directly into the sinus node artery. Am J Physiol 204: 9–15. https://doi.org/10.1152/ajplegacy.1963.204.1.9
- Donald DE, Shepherd JT (1978) Reflexes from the heart and lungs: physiological curiosities or important regulatory mechanisms. Cardiovasc Res 12: 446–469. https://doi.org/10.1093/cvr/12.8.449
- Cooper PJ, Lei M, Cheng LX, Kohl P (2000) Selected contribution: axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells. J Appl Physiol 89: 2099–2104. https://doi.org/10.1152/jappl.2000.89.5.2099
- Mills KT, Stefanescu A, He J (2020) The global epidemiology of hypertension. Nat Rev Nephrol 16: 223–237. https://doi.org/10.1038/s41581-019-0244-2
- Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA (1994) Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA 271: 840–844. https://doi.org/10.1001/jama.1994.03510350050036
- Medi C, Kalman JM, Spence SJ, Teh AW, Lee G, Bader J, Kaye DM, Kistler PM (2011) Atrial electrical and structural changes associated with longstanding hypertension in humans: Implications for the substrate for atrial fibrillation. J Cardiovasc Electrophysiol 22: 1317–1324. https://doi.org/10.1111/j.1540-8167.2011.02125.x
- Selejan SR, Linz D, Mauz M, Hohl M, Huynh AKD, Speer T, Wintrich J, Kazakov A, Werner C, Mahfoud F, Bohm M (2022) Renal denervation reduces atrial remodeling in hypertensive rats with metabolic syndrome. Basic Res Cardiol 117(1): 36. https://doi.org/10.1007/s00395-022-00943-6
- Lau DH, Shipp NJ, Kelly DJ, Thantgaimani S, Neo M, Kuklik P, Lim HS, Zhang Y, Drury K, Wong CX, Chia NH, Brooks AG, Dimitri H, Saint DA, Brown L, Sanders P (2013) Atrial arrhythmia in ageing spontaneously hypertensive rats: unraveling the substrate in hypertension and ageing. PLoS One 8(8): e72416. https://doi.org/10.1371/journal.pone.0072416
- Egorov YV, Glukhov AV, Efimov IR, Rosenshiraukh LV (2012) Hypothermia-induced spatially discordant action potential duration alternans and arrhythmogenesis in nonhibernating versus hibernating mammals. Am J Physiol Heart Circ Physiol 303(8): H1035-H1046. https://doi.org/10.1152/ajpheart.00786.2011
- Wilson LD, Rosenbaum D (2007) Mechanisms of arrythmogenic cardiac alternans. Europace 9 Suppl 6: vi77-vi82. https://doi.org/10.1093/europace/eum210
- Hennis K, Piantoni C, Biel M, Fenske S, Wahl-Schott C (2024) Pacemaker Channels and the Chronotropic Response in Health and Disease. Circ Res 134(10): 1348-1378. https://doi.org/10.1161/CIRCRESAHA.123.323250
- Quinn TA, Kohl P (2012) Mechano-sensitivity of cardiac pacemaker function: pathophysiological relevance, experimental implications, and conceptual integration with other mechanisms of rhythmicity. Prog Biophys Mol Biol 110(2-3): 257–268. https://doi.org/10.1016/j.pbiomolbio.2012.08.008
- Calloe K, Elmedyb P, Olesen SP, Jorgensen NK, Grunnet M (2005) Hypoosmotic cell swelling as a novel mechanism for modulation of cloned HCN2 channels. Biophys J (3): 2159–2169. https://doi.org/10.1529/biophysj.105.063792
- Lin W, Laitko U, Juranka PF, Morris CE (2007) Dual stretch responses of mHCN2 pacemaker channels: accelerated activation, accelerated deactivation. Biophys J 92: 1559–1572. https://doi.org/10.1529/biophysj.106.092478
- MacDonald EA, Madl J, Greiner J, Ramadan AF, Wells SM, Torrente AG, Kohl P, Rog-Zielinska EA, Quinn TA (2020) Sinoatrial node structure, mechanics, electrophysiology and the chronotropic response to stretch in rabbit and mouse. Front Physiol 11: 809. https://doi.org/10.3389/fphys.2020.00809
- Arbel Ganon L, Eid R, Hamra M, Yaniv Y (2023) The mechano-electric feedback mediates the dual effect of stretch in mouse sinoatrial tissue. J Mol Cell Cardiol Plus 5: 100042. https://doi.org/10.1016/j.jmccpl.2023.100042
- Lakatta EG, Maltsev VA, Vinogradova TM (2010) A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. Circ Res 106(4): 659–673. https://doi.org/10.1161/CIRCRESAHA.109.206078
- Turner D, Kang C, Mesirea P, Hong J, Mangoni ME, Glukhov AV, Sah R (2021) Electrophysiological and Molecular Mechanisms of Sinoatrial Node Mechanosensitivity. Front Cardiovasc Med 8: 662410. https://doi.org/10.3389/fcvm.2021.662410
- Bencze M, Boros A, Behrliak M, Vavrinova A, Vaneckova I, Zicha J (2024) Changes in cardiovascular autonomic control induced by chronic inhibition of acetylcholinesterase during pyridostigmine or donepezil treatment of spontaneously hypertensive rats. Eur J Pharmacol 971: 176526. https://doi.org/10.1016/j.ejphar.2024.176526
- Lazaritgues E, Brefel-Courbon C, Tran MA, Montastrue JL, Rascol O (1999) Spontaneously hypertensive rats cholinergic hyper-responsiveness: central and peripheral pharmacological mechanisms. Br J Pharmacol 127 (7): 1657–1665. https://doi.org/10.1038/sj.bjp.0702678
- Varvarousis D, Kallistratos M, Poulimenos L, Triantafyllis A, Tsinivizov P, Giannakopoulos A, Kyfridis K, Manolis A (2020) Cardiac arrhythmias in arterial hypertension. J Clin Hypertens (Greenwich) 22(8): 1371–1378. https://doi.org/10.1111/jch.13989
- Kneller J, Zou R, Yigmond EJ, Wang Z, Leon LJ, Nattel S (2002) Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties. Circ Res 90(9): E73-E87. https://doi.org/10.1161/01.res.0000019783.88094.ba
- Iwasaki YK, Nishida K, Kato T, Nattel S (2011) Atrial fibrillation pathophysiology: implications for management. Circulation (20): 2264–2274. https://doi.org/10.1161/CIRCULATIONAHA.111.019893
Дополнительные файлы


