On the mechanism of pharmacological regulation of neoinnervation in the subchondral bone by chondroitin sulfate at late stages of osteoarthritis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Today, the molecular mechanisms of pain development and the role of neoinnervation in the articular cartilage (AC) degradation in osteoarthritis (OA) have been revealed.

AIM: Analysis of the mechanism of pharmacological regulation of chondroitin sulfate (CS) neoinnervation in the subchondral bone (SB) at late stages of OA based on a retrospective analysis of the results of an open prospective controlled randomized study of the effectiveness of highly purified CS in parenteral form in individuals with OA of the knee joint (KJ) stage III according to Kellgren-Lawrence and functional insufficiency of the joints of stage II.

MATERIALS AND METHODS: Total knee arthroplasty (TKR) was performed in 67 patients (24 men and 43 women, aged 41 to 73 years) with knee OA in two groups: the control group (CG; n=35) and the main group (MG; n=32). All patients received non-steroidal anti-inflammatory drugs at a standard daily dose upon inclusion in the study. MG patients additionally received a parenteral form of CS, a course of 25 injections for 50 days, 2 months before TKR (according to C. Ranawat). X-ray of the knee was performed. The innervation of the joint tissues was studied using biosamples of the SC, SC, and the joint capsule obtained during TKR: histopathological assessment of the synovial membrane according to GSS, histological assessment, histochemical assessment of the SC according to H. Mankin as modified by V.B. Kraus et al., on the OARSI scale. An enzyme immunoassay was performed on the blood levels at visits 0, 1, and 2: C-reactive protein (CRP), interleukin-6 (IL-6), nerve growth factor β (βNGF), calcitonin gene-related peptide (CGRP), potassium, and calcium.

RESULTS: In patients in the CG, a significant number of capillary loops were found in the AC from the SC side and nerve endings in the AC thickness. In the MG, along with adaptive restructuring, the absence of neoangiogenesis from the SC side and neoinnervation in the AC thickness was shown. At discharge from the hospital and 3 months after TKR, a significant decrease in βNGF, CGRP, VEGF, CRP, IL-6, potassium and calcium in the blood of patients in the MG was recorded.

CONCLUSION: The effectiveness of parenteral HS (Chondroguard®) in relation to OA progression may be due to its effect on neoinnervation and is a new direction in therapeutic targeting of OA.

About the authors

Timur B. Minasov

Bashkir State Medical University; LLC Medical Center “Novomeditsina”

Email: M004@ya.ru
ORCID iD: 0000-0003-1916-3830
SPIN-code: 7865-6011

MD

Russian Federation, Ufa; 74 Socialisticheskaya str., 344002 Rostov-on-Don, Rostov-on-Don region

Irina V. Sarvilina

LLC Medical Center “Novomeditsina”

Author for correspondence.
Email: isarvilina@mail.ru
ORCID iD: 0000-0002-5933-5732
SPIN-code: 7308-6756

MD

Russian Federation, 74 Socialisticheskaya str., 344002 Rostov-on-Don, Rostov-on-Don region

Olga A. Gromova

Federal Research Center “Informatics and Management”

Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-7663-710X
SPIN-code: 6317-9833

MD

Russian Federation, Moscow

Anton G. Nazarenko

Priorov National Medical Research Center for Traumatology and Orthopedics

Email: NazarenkoAG@cito.priorov.ru
ORCID iD: 0000-0003-1314-2887
SPIN-code: 1402-5186

MD, Dr. Sci. (Medicine), professor RAS

Russian Federation, Moscow

Nikolay V. Zagorodniy

Priorov National Medical Research Center for Traumatology and Orthopedics; Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: zagorodniy@sustav.ru
ORCID iD: 0000-0002-6736-9772
SPIN-code: 6889-8166

MD, Dr. Sci. (Medicine), professor

Russian Federation, Moscow; Moscow

References

  1. GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023;5(9):e508–22. doi: 10.1016/S2665-9913(23)00163-7
  2. Weng Q, Chen Q, Jiang T, et al. Global burden of early-onset osteoarthritis, 1990–2019: results from the Global Burden of Disease Study 2019. Ann Rheum Dis. 2024;83(7):915–25. doi: 10.1136/ard-2023-225324
  3. Brandt KD. Pain, synovitis, and articular cartilage changes in osteoarthritis. Semin Arthritis Rheum. 1989;18(4 Suppl 2):77–80. doi: 10.1016/0049-0172(89)90021-8
  4. Altman RD, Dean D. Pain in osteoarthritis. Introduction and overview. Semin Arthritis Rheum. 1989;18(4 Suppl 2):1–3. doi: 10.1016/0049-0172(89)90007-3
  5. Kidd BL, Mapp PI, Blake DR, Gibson SJ, Polak JM. Neurogenic influences in arthritis. Ann Rheum Dis. 1990;49(8):649–52. doi: 10.1136/ard.49.8.649
  6. Hukkanen M, Grönblad M, Rees R, et al. Regional distribution of mast cells and peptide containing nerves in normal and adjuvant arthritic rat synovium. J Rheumatol. 1991;18(2):177–83.
  7. Saito T, Koshino T. Distribution of neuropeptides in synovium of the knee with osteoarthritis. Clin Orthop Relat Res. 2000;(376):172–82. doi: 10.1097/00003086-200007000-00024
  8. Saxler G, Löer F, Skumavc M, Pförtner J, Hanesch U. Localization of SP- and CGRP-immunopositive nerve fibers in the hip joint of patients with painful osteoarthritis and of patients with painless failed total hip arthroplasties. Eur J Pain. 2007;11(1):67–74. doi: 10.1016/j.ejpain.2005.12.011
  9. Englund M, Niu J, Guermazi A, et al. Effect of meniscal damage on the development of frequent knee pain, aching, or stiffness. Arthritis Rheum. 2007;56(12):4048–54. doi: 10.1002/art.23071
  10. Felson DT, Niu J, Guermazi A, et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum. 2007;56(9):2986–92. doi: 10.1002/art.22851
  11. Roemer FW, Guermazi A, Javaid MK, et al.; MOST Study investigators. Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST Study. A longitudinal multicentre study of knee osteoarthritis. Ann Rheum Dis. 2009;68(9):1461–5. doi: 10.1136/ard.2008.096834
  12. Ritter AM, Lewin GR, Kremer NE, Mendell LM. Requirement for nerve growth factor in the development of myelinated nociceptors in vivo. Nature. 1991;350(6318):500–2. doi: 10.1038/350500a0
  13. Levi-Montalcini R. Growth control of nerve cells by a protein factor and its antiserum: discovery of this factor may provide new leads to understanding of some neurogenetic processes. Science. 1964;143(3602):105–10. doi: 10.1126/science.143.3602.105
  14. Woolf CJ, Safieh-Garabedian B, Ma QP, Crilly P, Winter J. Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience. 1994;62(2):327–31. doi: 10.1016/0306-4522(94)90366-2
  15. McMahon SB, Bennett DL, Priestley JV, Shelton DL. The biological effects of endogenous nerve growth factor on adult sensory neurons revealed by a trkA-IgG fusion molecule. Nat Med. 1995;1(8):774–80. doi: 10.1038/nm0895-774
  16. von Loga IS, El-Turabi A, Jostins L, et al. Active immunisation targeting nerve growth factor attenuates chronic pain behaviour in murine osteoarthritis. Ann Rheum Dis. 2019;78(5):672–675. doi: 10.1136/annrheumdis-2018-214489
  17. Lane NE, Schnitzer TJ, Birbara CA, et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med. 2010;363(16):1521–31. doi: 10.1056/NEJMoa0901510
  18. Walsh DA, McWilliams DF, Turley MJ, et al. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxford). 2010;49(10):1852–61. doi: 10.1093/rheumatology/keq188
  19. Aso K, Shahtaheri SM, Hill R, et al. Associations of Symptomatic Knee Osteoarthritis With Histopathologic Features in Subchondral Bone. Arthritis Rheumatol. 2019;71(6):916–924. doi: 10.1002/art.40820
  20. Driscoll C, Chanalaris A, Knights C, et al. Nociceptive Sensitizers Are Regulated in Damaged Joint Tissues, Including Articular Cartilage, When Osteoarthritic Mice Display Pain Behavior. Arthritis Rheumatol. 2016;68(4):857–67. doi: 10.1002/art.39523
  21. Miller RE, Tran PB, Das R, et al. CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc Natl Acad Sci U S A. 2012. 11;109(50):20602–7. doi: 10.1073/pnas.1209294110
  22. Obeidat AM, Wood MJ, Adamczyk NS, et al. Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis. Nat Commun. 2023;14(1):2479. doi: 10.1038/s41467-023-38241-x
  23. Conaghan PG, Cook AD, Hamilton JA, Tak PP. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat Rev Rheumatol. 2019;15(6):355–363. doi: 10.1038/s41584-019-0221-y
  24. Wenham CY, Hensor EM, Grainger AJ, et al. A randomized, double-blind, placebo-controlled trial of low-dose oral prednisolone for treating painful hand osteoarthritis. Rheumatology (Oxford). 2012;51(12):2286–94. doi: 10.1093/rheumatology/kes219
  25. Kroon FPB, Kortekaas MC, Boonen A, et al. Results of a 6-week treatment with 10 mg prednisolone in patients with hand osteoarthritis (HOPE): a double-blind, randomised, placebo-controlled trial. Lancet. 2019. 30;394(10213):1993–2001. doi: 10.1016/S0140-6736(19)32489-4
  26. Watson M. The suppressing effect of indomethacin on articular cartilage. Rheumatol Rehabil. 1976;15(1):26–30. doi: 10.1093/rheumatology/15.1.26
  27. Slowman-Kovacs SD, Albrecht ME, Brandt KD. Effects of salicylate on chondrocytes from osteoarthritic and contralateral knees of dogs with unilateral anterior cruciate ligament transection. Arthritis Rheum. 1989;32(4):486–90. doi: 10.1002/anr.1780320420
  28. Palmoski MJ, Colyer RA, Brandt KD. Marked suppression by salicylate of the augmented proteoglycan synthesis in osteoarthritic cartilage. Arthritis Rheum. 1980;23(1):83–91. doi: 10.1002/art.1780230114
  29. Palmoski MJ, Brandt KD. In vivo effect of aspirin on canine osteoarthritic cartilage. Arthritis Rheum. 1983;26(8):994–1001. doi: 10.1002/art.1780260808
  30. McAlindon TE, LaValley MP, Harvey WF, et al. Effect of Intra-articular Triamcinolone vs Saline on Knee Cartilage Volume and Pain in Patients With Knee Osteoarthritis: A Randomized Clinical Trial. JAMA. 2017;317(19):1967–1975. doi: 10.1001/jama.2017.5283
  31. Vincent TL, Miller RE. Molecular pathogenesis of OA pain: Past, present, and future. Osteoarthritis Cartilage. 2024;32(4):398–405. doi: 10.1016/j.joca.2024.01.005
  32. Hochberg M. Structure-modifying effects of chondroitin sulfate in knee osteoarthritis: an updated meta-analysis of randomized placebo-controlled trials of 2-year duration. Osteoarthritis Cartilage. 2010;18 Suppl 1:S28–31. doi: 10.1016/j.joca.2010.02.016.
  33. Torshin IYu, Lila AM, Naumov AV, et al. Meta-analysis of clinical trials of osteoarthritis treatment effectiveness with Chondroguard. Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020;13(4):388–399. (in Russ.). doi: 10.17749/2070-4909/farmakoekonomika.2020.066
  34. Reginster J-Y, Veronese N. Highly purified chondroitin sulfate: a literature review on clinical efficacy and pharmacoeconomic aspects in osteoarthritis treatment. Aging Clin Exp Res. 2021;33(1):37–47. doi: 10.1007/s40520-020-01643-8
  35. Monfort J, Pelletier J, Garcia-Giralt N, Martel-Pelletier J. Biochemical basis of the effect of chondroitin sulphate on osteoarthritis articular tissues. Ann Rheum Dis. 2008;67(6):735–740. doi: 10.1136/ard.2006.068882
  36. Martel-Pelletier J, Kwan Tat S, Pelletier J. Effects of chondroitin sulfate in the pathophysiology of the osteoarthritic joint: a narrative review. Osteoarthritis Cartilage. 2010;18 Suppl 1:S7–11. doi: 10.1016/j.joca.2010.01.015
  37. Lambert C, Mathy-Hartert M, Dubuc J, et al. Characterization of synovial angiogenesis in osteoarthritis patients and its modulation by chondroitin sulfate. Arthritis Res Ther. 2012;14(2):R58. doi: 10.1186/ar3771.
  38. Minasov TB, Lila AM, Nazarenko AG, et al. Morphological reflection of highly purified chondroitin sulfate action in patients with decompensated form of knee osteoarthritis. Modern Rheumatology Journal. 2022;16(6):55–63 (in Russ.). doi: 10.14412/1996-7012-2022-6-55-63
  39. Anijs Th, Wolfson D, Verdonschot N, Janssen D. Population-based effect of total knee arthroplasty alignment on simulated tibial bone remodeling. J Mech Behav Biomed Mater. 2020;111:104014. doi: 10.1016/j.jmbbm.2020.104014
  40. Dubrovin GM, Lebedev AYu. Prediction and prevention of the development of post-traumatic gonarthrosis in intra-articular fractures of the knee joint. Khirurgiya. Zhurnal im. N.I. Pirogova. 2018;(12):106–10. (In Russ.). doi: 10.17116/hirurgia2018121106
  41. Martel-Pelletier J, Barr A, Cicuttini F, et al. Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072. doi: 10.1038/nrdp.2016.72
  42. Nasonov EL, editor. Rossiiskie klinicheskie rekomendatsii. Revmatologiya. Moscow: GEOTAR-Media; 2017. 464 p. (In Russ.).
  43. Ranawat C, Dorr L, Inglis A. Total hip arthroplasty in protrusio acetabuli of rheumatoid arthritis. J Bone Joint Surg Am. 1980;62(7):1059–65
  44. Krenn V, Morawietz L, Burmester GR, et al. Synovitis score: discrimination between chronic low-grade and high-grade synovitis. Histopathology. 2006;49(4):358–64. doi: 10.1111/j.1365-2559.2006.02508.x
  45. Bade M, Kohrt W, Stevens-Lapsley J. Outcomes before and after total knee arthroplasty compared to healthy adults. J Orthop Sports Phys Ther. 2010;40(9):559–67. doi: 10.2519/jospt.2010.3317
  46. Bourne R, Chesworth B, Davis A, et al. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res. 2010;468(1):57–63. doi: 10.1007/ s11999-009-1119-9
  47. Balaboshka KB, Khadzkou YK. The analysis of the early total knee joint arthroplasty results. Vestnik VGMU. 2017;16(5):75–83. (In Russ.). doi: 10.22263/2312-4156.2017.5.75
  48. Sarvilina IV, Minasov TB, Lila AM, et al. On the efficacy of the parenteral form of highly purified chondroitin sulfate in the mode of perioperative preparation for total knee arthroplasty. RMJ. 2022;7:7–16. (in Russ.). EDN: FDDFLK
  49. Mertens M, Singh J. Biomarkers in arthroplasty: a systematic review. Open Orthop J. 2011:5:92–105. doi: 10.2174/1874325001105010092
  50. Pearle A, Scanzello C, George S, et al. Elevated high-sensitivity C-reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarthritis Cartilage. 2007;15(5):516–523. doi: 10.1016/j.joca.2006.10.010
  51. Koch A, Harlow L, Haines G, et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol. 1994;152(8):4149–4156.
  52. Barthel C, Yeremenko N, Jacobs R, et al. Nerve growth factor and receptor expression in rheumatoid arthritis and spondyloarthritis. Arthritis Res Ther. 2009;11(3):R82. doi: 10.1186/ar2716
  53. Minasov TB, Sarvilina IV, Lila AM, et al. Remodelirovanie subhondral’noj kosti i neoangiogenez pri dekompensirovannoj forme osteoartrita: evolyuciya terapevticheskogo targetirovaniya. RMJ. 2023;8:8–14. (in Russ.). EDN: BKNEMO
  54. Iannone F, De Bari C, Dell’Accio F, et al. Increased expression of nerve growth factor (NGF) and high affinity NGF receptor (p140 TrkA) in human osteoarthritic chondrocytes. Rheumatology (Oxford). 2002;41(12):1413–8. doi: 10.1093/rheumatology/41.12.1413
  55. Vincent TL. Peripheral pain mechanisms in osteoarthritis. Pain. 2020;161 Suppl 1(1):S138–S146. doi: 10.1097/j.pain.0000000000001923
  56. Malfait AM, Miller RE, Block JA. Targeting neurotrophic factors: Novel approaches to musculoskeletal pain. Pharmacol Ther. 2020;211:107553. doi: 10.1016/j.pharmthera.2020.107553
  57. Aso K, Shahtaheri SM, Hill R, et al. Contribution of nerves within osteochondral channels to osteoarthritis knee pain in humans and rats. Osteoarthritis Cartilage. 2020;28(9):1245–1254. doi: 10.1016/j.joca.2020.05.010
  58. Obeidat AM, Miller RE, Miller RJ, Malfait AM. The nociceptive innervation of the normal and osteoarthritic mouse knee. Osteoarthritis Cartilage. 2019;27(11):1669–1679. doi: 10.1016/j.joca.2019.07.012
  59. Obeidat AM, Ishihara S, Li J, et al. Intra-articular sprouting of nociceptors accompanies progressive osteoarthritis: comparative evidence in four murine models. Front Neuroanat. 2024;18:1429124. doi: 10.3389/fnana.2024.1429124
  60. Zhu S, Zhu J, Zhen G, et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest. 2019;129(3):1076–1093. doi: 10.1172/JCI121561
  61. Olaseinde OF, Owoyele BV. Chondroitin sulfate produces antinociception and neuroprotection in chronic constriction injury-induced neuropathic pain in rats by increasing anti-inflammatory molecules and reducing oxidative stress. Int J Health Sci (Qassim). 2021;15(5):3–17.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Neoangiogenesis and neoinnervation in articular cartilage of patients in the control group. Note (here and in Fig. 2): staining with hemotoxylin and eosin; ×125.

Download (271KB)
3. Fig. 2. Elements of adaptive restructuring and a uniform line of subchondral bone (a), chondrocytes have a columnar orientation (from 4 to 8 cells in a lacuna; isogenic groups of chondrocytes in the deep zone) (b), capillary loops and nerve endings were not detected in the articular cartilage of patients in the main group.

Download (125KB)
4. Fig. 3. Intermolecular interactions of nerve growth factor β (bioinformatics analysis was performed based on the STRING database, version 12.0). Note. NGF — nerve growth factor β, NGFR — nerve growth factor β receptor; NTRK2 — BDNF/NT-3 growth factor receptor; NTRK1 — high-affinity nerve growth factor receptor; NTRK3 — NT-3 growth factor receptor; SORT1 — sortilin; GFRA1 — GDNF family of growth factor alpha 1-receptor; SORCS2 — VPS10 domain-containing receptor SorCS2; GDNF — glial cell-derived neurotrophic factor; NTF4 — neurotrophin-4; TRPA1 — transient receptor potential cation channel, member 1 of subfamily A.

Download (288KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».