Перспективы использования генеративного искусственного интеллекта в хирургии, травматологии и ортопедии
- Авторы: Назаренко А.Г.1, Клеймёнова Е.Б.1, Какабадзе Н.М.1, Молодченков А.И.2,3, Яшина Л.П.1
-
Учреждения:
- Национальный медицинский исследовательский центр травматологии и ортопедии им. Н.Н. Приорова
- Федеральный исследовательский центр «Информатика и управление» РАН
- Российский университет дружбы народов
- Выпуск: Том 32, № 1 (2025)
- Страницы: 221-239
- Раздел: Обзоры
- URL: https://journal-vniispk.ru/0869-8678/article/view/291003
- DOI: https://doi.org/10.17816/vto642647
- ID: 291003
Цитировать
Аннотация
В обзоре рассматривается использование технологий генеративного искусственного интеллекта в хирургии, травматологии и ортопедии. Даны определения ключевых технологий генеративного искусственного интеллекта, а также отличия дискриминативных моделей искусственного интеллекта от генеративных. Проведён анализ публикационной активности по применению генеративного искусственного интеллекта в хирургии, травматологии и ортопедии по макрорегионам мира. Проанализирована потенциальная роль различных моделей генеративного искусственного интеллекта на предоперационном, интраоперационном и послеоперационном этапах лечения пациентов. Приводятся данные о результатах клинического применения генеративного искусственного интеллекта в указанных областях и наиболее распространённые проблемы, связанные с практическим использованием различных приложений генеративного искусственного интеллекта, включая вопросы обеспечения качества и безопасности хирургической помощи. В обзоре предлагаются потенциальные решения и направления исследований для решения этих проблем.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Антон Герасимович Назаренко
Национальный медицинский исследовательский центр травматологии и ортопедии им. Н.Н. Приорова
Email: NazarenkoAG@cito.priorov.ru
ORCID iD: 0000-0003-1314-2887
SPIN-код: 1402-5186
д-р мед. наук, профессор РАН
Россия, 115172, Москва, Новоспасский пер., д. 9Елена Борисовна Клеймёнова
Национальный медицинский исследовательский центр травматологии и ортопедии им. Н.Н. Приорова
Email: KleymenovaEB@cito-priorov.ru
ORCID iD: 0000-0002-8745-6195
SPIN-код: 2037-7164
д-р мед. наук, профессор
Россия, 115172, Москва, Новоспасский пер., д. 9Нодари Малхазович Какабадзе
Национальный медицинский исследовательский центр травматологии и ортопедии им. Н.Н. Приорова
Email: KakabadzeNM@cito-priorov.ru
ORCID iD: 0000-0002-2380-2394
SPIN-код: 6321-6733
Россия, 115172, Москва, Новоспасский пер., д. 9
Алексей Игоревич Молодченков
Федеральный исследовательский центр «Информатика и управление» РАН; Российский университет дружбы народов
Email: aim@isa.ru
ORCID iD: 0000-0003-0039-943X
SPIN-код: 3378-7234
канд. тех. наук
Россия, Москва; МоскваЛюбовь Петровна Яшина
Национальный медицинский исследовательский центр травматологии и ортопедии им. Н.Н. Приорова
Автор, ответственный за переписку.
Email: YashinaLP@cito-priorov.ru
ORCID iD: 0000-0003-1357-0056
SPIN-код: 1910-0484
канд. биол. наук
Россия, 115172, Москва, Новоспасский пер., д. 9Список литературы
- Goldman S. AI investment forecast to approach $200 billion globally by 2025. [2023 Aug 1]. Available from: https://www.goldmansachs.com/insights/articles/ai-investment-forecast-to-approach-200-billion-globally-by-2025 Accessed: 14.10.2024.
- Gartner says more than 80% of enterprises will have used generative AI APIs or deployed generative AI-enabled applications by 2026. [2023 Oct 11]. Available from: https://www.gartner.com/en/newsroom/press-releases/2023-10-11-gartner-says-more-than-80-percent-of-enterprises-will-have-used-generative-ai-apis-or-deployed-generative-ai-enabled-applications-by-2026 Accessed: 15.10.2024.
- Masyuk D, Sergienko Ya. Artificial Intelligence in Russia — 2023: Trends and Prospects. Moscow: Yakov and Partners; 2023. 80 p. Available from: https://yakovpartners.ru/upload/iblock/c5e/c8t1wrkdne5y9a4nqlicderalwny7xh4/20231218_AI_future.pdf (in Russ.)
- Bastian M. GPT-4 has more than a trillion parameters. [2023 Mar 25]. Available from: https://the-decoder.com/gpt-4-has-a-trillion-parameters/#summary
- WHO Guideline: Recommendations on digital interventions for health system strengthening. Geneva: WHO; 2019. 124 p. Available from: https://www.who.int/reproductivehealth/publications/digital-interventions-health-system-strengthening/en.
- WHO guidance. Ethics and governance of artificial intelligence for health. Geneva: World Health Organization; 2021. 165 р. Available from: https://www.who.int/publications/i/item/9789240029200
- WHO guidance. Ethics and governance of artificial intelligence for health. Guidance on large multi-modal models. Geneva: World Health Organization; 2024. 98 р. Available from: https: //www.who.int/publications/i/item /9789240084759
- GOST R 59277-2020. Artificial intelligence systems. Classification of artificial intelligence systems (appr. 23.12.2020). Moscow: Standartinform; 2021 (in Russ.)
- Muhammad A, Vissa S. Using the capabilities of hybrid generative-discriminative models. [2024 Apr 17]. Available from: https://skine.ru/articles/737238.
- Generative AI vs. discriminative AI: understanding the key differences. [2024 Jul 24]. Available from: https://www.geeksforgeeks.org/difference-between-generative-ai-and-discriminative-ai
- Osipov YuS, editor. Neural network. The Great Russian Encyclopedia: [in 35 volumes]. Moscow: The Great Russian Encyclopedia; 2004–2017. (in Russ.)
- Zsidai B, Kaarre J, Narup E, et al.; ESSKA Artificial Intelligence Working Group. A practical guide to the implementation of artificial intelligence in orthopaedic research-Part 2: A technical introduction. J Exp Orthop. 2024;11(3):e12025. doi: 10.1186/s40634-023-00662-4
- Moulaei K, Yadegari A, Baharestani M, et al. Generative artificial intelligence in healthcare: A scoping review on benefits, challenges and applications. Int J Med Inform. 2024;188:105474. doi: 10.1016/j.ijmedinf.2024.105474
- Manning CD. Human language understanding and reasoning. Daedalus. 2022;151(2):127–138. doi: 10.1162/DAED_a_01905
- Rodler S, Ganjavi C, Backerd PD. Generative artificial intelligence in surgery. Surgery. 2024;175(6):1496–1502. doi: 10.1016/j.surg.2024.02.019
- Bugaj M, Kliestik T, Lăzăroiu G. Generative artificial intelligence-based diagnostic algorithms in disease risk detection, in personalized and targeted healthcare procedures, and in patient care safety and quality. Contemp Read Law Soc. Justice. 2023;15:9–26.
- Tanveer SA, Fatima B, Ghafoor R. Diagnostic accuracy of artificial intelligence versus manual detection in marginal bone loss around fixed prosthesis. a systematic review. J Pak Med Assoc. 2024;74(4 Suppl):S37–S42. doi: 10.47391/JPMA.AKU-9S-06
- Michelutti L, Tel A, Zeppieri M, et al. Generative adversarial networks (GANs) in the field of head and neck surgery: current evidence and prospects for the future-a systematic review. J Clin Med. 2024;13(12):3556. doi: 10.3390/jcm13123556
- Schukow C, Smith SC, Landgrebe E, et al. Application of ChatGPT in routine diagnostic pathology: promises, pitfalls, and potential future directions. Adv Anat Pathol. 2023;31(1):15–21. doi: 10.1097/PAP.0000000000000406
- Haemmerli J, Sveikata L, Nouri A, et al. ChatGPT in glioma adjuvant therapy decision making: Ready to assume the role of a doctor in the tumor board? BMJ Health Care Inform. 2023;30(1):e100775. doi: 10.1136/bmjhci-2023-100775
- Chen TC, Kaminski E, Koduri L, et al. Chat GPT as a Neuro-score Calculator: Analysis of a large language model’s performance on various neurological exam grading scales. World Neurosurg. 2023;179:e342–e347. doi: 10.1016/j.wneu.2023.08.088
- Rizwan A, Sadiq T. The use of AI in diagnosing diseases and providing management plans: a consultation on cardiovascular disorders with ChatGPT. Cureus. 2023;15(8):e43106. doi: 10.7759/cureus.43106
- Gala D, Makaryus AN. The utility of language models in cardiology: a narrative review of the benefits and concerns ofChatGPT-4. Int J Environ Res Public Health. 2023;20(15):6438. doi: 10.3390/ijerph20156438
- Buga M, Kliestik T, Lăzăroiu G. Generative artificial intelligence-based diagnostic algorithms in disease risk detection, in personalized and targeted healthcare procedures, and in patient care safety and quality. Contemp Read Law Soc Justice. 2023;15:9–26.
- Eppler MB, Ganjavi C, Knudsen JE, et al. Bridging the gap between urological research and patient understanding: the role of large language models in automated generation of layperson’s summaries. Urol Pract. 2023;10(5):436e443. doi: 10.1097/UPJ.0000000000000428
- Javaid M, Haleem A, Singh RP. ChatGPT for healthcare services: An emerging stage for an innovative perspective. BenchCouncil Trans. Benchmarks Stand Eval. 2023;3:100105. doi: 10.1016/j.tbench.2023.100105
- Sharma SC, Ramchandani JP, Thakker A, Lahiri A. ChatGPT in plastic and reconstructive surgery. Indian J Plast Surg. 2023;56(4):320–325. doi: 10.1055/s-0043-1771514
- Aljindan FK, Shawosh MH, Altamimi L, et al. Utilization of ChatGPT-4 in plastic and reconstructive surgery: a narrative review. Plast Reconstr Surg Glob Open. 2023;11(10):e5305. doi: 10.1097/GOX.0000000000005305
- Zhou XY, Guo Y, Shen M, Yang GZ. Application of artificial intelligence in surgery. Front Med. 2020;14(4):417–430. doi: 10.1007/s11684-020-0770-0
- Zhou XY, Yang GZ, Lee SL. A real-time and registration-free framework for dynamic shape instantiation. Med Image Anal. 2018;44:86–97. doi: 10.1016/j.media.2017.11.009
- van der Stap N, van der Heijden F, Broeders IA. Towards automated visual flexible endoscope navigation. Surg Endosc. 2013;27(10):3539–3547. doi: 10.1007/s00464-013-3003-7
- Shen M, Gu Y, Liu N, Yang GZ. Context-aware depth and pose estimation for bronchoscopic navigation. IEEE Robot Autom Lett. 2019;4(2):732–739. doi: 10.1109/LRA.2019.2893419
- Ozyoruk KB, Gokceler GI, Bobrow TL, et al. EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos. Med Image Anal. 2021;71:102058. doi: 10.1016/j.media.2021.102058
- Yang Z, Lin S, Simon R, Linte CA. Endoscope Localization and Dense Surgical Scene Reconstruction for Stereo Endoscopy by Unsupervised Optical Flow and Kanade-Lucas-Tomasi Tracking. Annu Int Conf IEEE Eng Med Biol Soc. 2022;2022:4839–4842. doi: 10.1109/EMBC48229.2022.9871588
- Song J, Wang J, Zhao L, et al. MIS-SLAM: real-time large-scale dense deformable SLAM system in minimal invasive surgery based on heterogeneous computing. IEEE Robot Autom Lett. 2018;3(4):4068–4075. doi: 10.1109/lra.2018.2856519
- Turan M, Almalioglu Y, Araujo H, et al. Deep endovo: a recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots. Neurocomputing. 2018;275:1861–1870.
- Kalfas IH. Machine vision navigation in spine surgery. Front Surg. 2021;8:1–7. doi: 10.3389/fsurg.2021.640554
- Massalimova A, Timmermans M, Esfandiari H, et al. Intraoperative tissue classification methods in orthopedic and neurological surgeries: A systematic review. Front Surg. 2022;9:952539. doi: 10.3389/fsurg.2022.952539
- Timmermans M, Massalimova A, Li R, et al. State-of-the-art of non-radiative, non-visual spine sensing with a focus on sensing forces, vibrations and bioelectrical properties: a systematic review. Sensors (Basel). 2023;23(19):8094. doi: 10.3390/s23198094
- Wang J, Suenaga H, Hoshi K, et al. Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery. IEEE Trans Biomed Eng. 2014;61(4):1295–1304. doi: 10.1109/TBME.2014.2301191
- Gouveia PF, Costa J, Morgado P, et al. Breast cancer surgery with augmented reality. Breast. 2021;56:14–17. doi: 10.1016/j.breast.2021.01.004
- Carl B, Bopp M, Benescu A, Saß B, Nimsky C. Indocyanine green angiography visualized by augmented reality in aneurysm surgery. World Neurosurg. 2020;142:e307–e315. doi: 10.1016/j.wneu.2020.06.219
- Carl B, Bopp M, Saß B, Nimsky C. Microscope-based augmented reality in degenerative spine surgery: initial experience. World Neurosurg. 2019;128:e541–e551. doi: 10.1016/j.wneu.2019.04.192
- Edström E, Burström G, Omar A, et al. Augmented reality surgical navigation in spine surgery to minimize staff radiation exposure. Spine. 2020;45(1):E45–E53. doi: 10.1097/BRS.0000000000003197
- Zhang X, Wang J, Wang T, et al. A markerless automatic deformable registration framework for augmented reality navigation of laparoscopy partial nephrectomy. Int J CARS. 2019;14(8):1285–1294. doi: 10.1007/s11548-019-01974-6
- Luo H, Yin D, Zhang S., et al. Augmented reality navigation for liver resection with a stereoscopic laparoscope. Comput Methods Programs Biomed. 2020;187:105099. doi: 10.1016/j.cmpb.2019.105099
- Lefter LP, Walker SR, Dewhurst F, Turner RW. An audit of operative notes: facts and ways to improve. ANZ J Surg. 2008;78:800–2. doi: 10.1111/j.1445-2197.2008.04654.x
- Abdelhady AM, Davis CR. Plastic surgery and artificial intelligence: how ChatGPT improved operation note accuracy, time, and education. Mayo Clinic Proceedings: Digital Health. 2023;1:299e308. doi: 10.1016/j.mcpdig.2023.06.002
- Singh S, Djalilian A, Al MJ. ChatGPT and ophthalmology: exploring its potential with discharge summaries and operative notes. Semin Ophthalmol. 2023;38(5):503–507. doi: 10.1080/08820538.2023.2209166
- Waisberg E, Ong J, Masalkhi M, et al. GPT-4 and ophthalmology operative notes. Ann Biomed Eng. 2023;51(11):2353–2355. doi: 10.1007/s10439-023-03263-5.
- Ali A, Kumar RP, Polavarapu H, et al. Bridging the gap: can large language models match human expertise in writing neurosurgical operative notes? World Neurosurg. 2024:192:e34–e41. doi: 10.1016/j.wneu.2024.08.062
- Dubinski D, Won SY, Trnovec S, et al. Leveraging artificial intelligence in neurosurgery-unveiling ChatGPT for neurosurgical discharge summaries and operative reports. Acta Neurochir (Wien). 2024;166(1):38. doi: 10.1007/s00701-024-05908-3
- Robinson A, Aggarwal SJr. When precision meets penmanship: ChatGPT and surgery documentation. Cureus. 2023;15(6):e40546. doi: 10.7759/cureus.40546
- Arif F. ChatGPT for the standardized operative notes in plastic surgery. J Liaquat Nat. Hosp. 2023;1(2):111–113.
- Jung JJ, Elfassy J, Jüni P, Grantcharov T. Adverse events in the operating room: Definitions, prevalence, and characteristics. A systematic review. World J Surg. 2019;43(10):2379–2392. doi: 10.1007/s00268-019-05048-1
- Eppler MB, Sayegh AS, Maas M, et al. Automated capture of intraoperative adverse events using artificial intelligence: a systematic review and meta-analysis. J Clin Med. 2023;12(4):1687. doi: 10.3390/jcm12041687
- Yamazaki Y, Kanaji S, Matsuda T, et al. Automated surgical instrument detection from laparoscopic gastrectomy video images using an open source convolutional neural network platform. J Am Col. Surg. 2020;230(5):725–732.e1. doi: 10.1016/j.jamcollsurg.2020.01.037
- Hegde SR, Namazi B, Iyengar N, et al. Automated segmentation of phases, steps, and tasks in laparoscopic cholecystectomy using deep learning. Surg Endosc. 2024;38(1):158–170. doi: 10.1007/s00464-023-10482-3
- Lee D, Yu HW, Kwon H, et al. Evaluation of surgical skills during robotic surgery by deep learning-based multiple surgical instrument tracking in training and actual operations. J Clin Med. 2020;9:1964. doi: 10.3390/jcm9061964
- Cacciamani GE, Anvar A, Chen A, et al. How the use of the artificial intelligence could improve surgical skills in urology: State of the art and future perspectives. Curr Opin Urol. 2021;31(4):378–384. doi: 10.1097/MOU.0000000000000890
- Peregrin T. Black box technology shines light on improving OR safety, efficiency. ACS Bulletin. 2023;108(7):17–23.
- Jung JJ, Jüni P, Lebovic G, Grantcharov T. First-year analysis of the operating room black box study. Ann Surg. 2020;271(1):122–127. doi: 10.1097/SLA.0000000000002863
- Al Abbas AI, Meier J, Daniel W, et al. Impact of team performance on the surgical safety checklist on patient outcomes: an operating room black box analysis. Surg Endosc. 2024;38:5613–5622 doi: 10.1007/s00464-024-11064-7
- Gordon L, Grantcharov T, Rudzicz F. Explainable artificial intelligence for safe intraoperative decision support. JAMA Surg. 2019;154(11):1064–1065. doi: 10.1001/jamasurg.2019.2821
- Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2(10):749–760. doi: 10.1038/s41551-018-0304-0
- Zeng X, Hu Y, Shu L. et al. Explainable machine-learning predictions for complications after pediatric congenital heart surgery. Sci Rep. 2021;11:17244. doi: 10.1038/s41598-021-96721-w
- Park J-B, Lee H-J, Yang H-L, et al. Machine learning-based prediction of intraoperative hypoxemia for pediatric patients. PLoS ONE. 2023;18(3):e0282303. doi: 10.1371/journal.pone.0282303
- Bektaş M, Pereira JK, Daams F, et al. ChatGPT in surgery: a revolutionary innovation? Surg. Today. 2024;54:964–971. doi: 10.1007/s00595-024-02800-6
- Liu S, Wright AP, Patterson BL, et al. Using AI-generated suggestions from ChatGPT to optimize clinical decision support. J Am Med Inform Assoc. 2023;30(7):1237–1245. doi: 10.1093/jamia/ocad072
- Liu S, McCoy AB, Peterson JF, et al. Leveraging explainable artificial intelligence to optimize clinical decision support. J Am Med Inform Assoc. 2024;31(4):968–974. doi: 10.1093/jamia/ocae019
- Averkin AN. Explainable artificial intelligence as part of the third generation artificial intelligence. Speech technologies. 2023;(1):4–10. (In Russ.) EDN: ONAIEY
- Van De Sande D, Van Genderen ME, Braaf H, et al. Moving towards clinical use of artificial intelligence in intensive care medicine: business as usual? Intensive Care Med. 2022;48(12):1815–7. doi: 10.1007/s00134-022-06910-y
- Deasy J, Liò P, Ercole A. Dynamic survival prediction in intensive care units from heterogeneous time series without the need for variable selection or curation. Sci Rep. 2020;10(1):22129. doi: 10.1038/s41598-020-79142-z
- Abgrall G, Holder AL, Chelly Dagdia Z, et al. Should AI models be explainable to clinicians? Crit Care. 2024;28:301. doi: 10.1186/s13054-024-05005-y
- Savage N. Breaking into the black box of artificial intelligence. Nature. 2022. doi: 10.1038/d41586-022-00858-1
- Patel SB, Lam K. ChatGPT: the future of discharge summaries? Lancet Digit Health. 2023;5(3):e107–e108. doi: 10.1016/S2589-7500(23)00021-3
- Earnshaw CH, Pedersen A, Evans J. Improving the quality of discharge summaries through a direct feedback system. Future Healthc J. 2020;7(2):149–154. doi: 10.7861/fhj.2019-0046
- Unnewehr M, Schaaf B, Marev R, et al. Optimizing the quality of hospital discharge summaries — a systematic review and practical tools. Postgraduate Med. 2015;127(6):630–639. doi: 10.1080/00325481.2015.1054256
- Salim Al-Damluji M, Dzara K, Hodshon B, et al. Association of discharge summary quality with readmission risk for patients hospitalized with heart failure exacerbation. Circ Cardiovasc Qual Outcomes. 2015;8:109–111. doi: 10.1161/CIRCOUTCOMES.114.001476
- Wood H, Lewis H, Ward R, et al. Improving community prescribing of post-fracture denosumab after discharge. Br J Hosp Med. 2017;78(1):20–22. doi: 10.12968/hmed.2017.78.1.20
- Carter A, Warner E, Roberton A, et al. Tonsillectomy discharge information-An improvement in both patient safety and satisfaction. BMJ Open Quality. 2014;2(2):u203433-u2w1546. doi: 10.1136/bmjquality.u203433.w1546
- Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. N Engl J Med. 2023;388(13):1233–1239. doi: 10.1056/NEJMsr2214184
- Dubinski D, Won SY, Trnovec S, et al. Leveraging artificial intelligence in neurosurgery — unveiling ChatGPT for neurosurgical discharge summaries and operative reports. Acta Neurochir. 2024;166:38. doi: 10.1007/s00701-024-05908-3
- Clough RAJ, Sparkes WA, Clough OT, et al. Transforming healthcare documentation: harnessing the potential of AI to generate discharge summaries. BJGP Open. 2024;8(1):BJGPO.2023.0116. doi: 10.3399/BJGPO.2023.0116
- Ando K, Okumura T, Komachi M, et al. Is artificial intelligence capable of generating hospital discharge summaries from inpatient records? PLOS Digit Health. 2022;1(12):e0000158. doi: 10.1371/journal.pdig.0000158
- Konstantinova LV, Vorozhikhin VV, Petrov AM, Titova ES. Generative Artificial Intelligence: Challenges for Traditional Education: Results of Monitoring Information on Trends in the Development of Higher Education in the World and in Russia. Moscow: Plekhanov Russian University of Economics; 2023. 85 р. (In Russ.)
- Oh N, Choi GS, Lee WY. ChatGPT goes to the operating room: evaluating GPT-4 performance and its potential in surgical education and training in the era of large language models. Ann Surg Treat Res. 2023;104(5):269–273. doi: 10.4174/astr.2023.104.5.269
- Blumstein G, Zukotynski B, Cevallos N, et al. Randomized trial of a virtual reality tool to teach surgical technique for tibial shaft fracture intramedullary nailing. J Surg Educ. 2020;77:969–977. doi: 10.1016/j.jsurg.2020.01.002
- Mirchi N, Bissonnette V, Ledwos N, et al. Artificial neural networks to assess virtual reality anterior cervical discectomy performance. Oper Neurosurg (Hagerstown). 2019;19:65–75. doi: 10.1093/ons/opz359
- Guerrero DT, Asaad M, Rajesh A, et al. Advancing surgical education: the use of artificial intelligence in surgical training. Am Surg. 2023;89(1):49–54. doi: 10.1177/00031348221101503
- Winkler-Schwartz A, Yilmaz R, Mirchi N, et al. Machine learning identification of surgical and operative factors associated with surgical expertise in virtual reality simulation. JAMA Netw Open. 2019;2:e198363. doi: 10.1001/jamanetworkopen.2019.8363
- Bilgic E, Gorgy A, Yang A, et al. Exploring the roles of artificial intelligence in surgical education: A scoping review. Am J Surg. 2022;224(1 Pt A):205–216. doi: 10.1016/j.amjsurg.2021.11.023
- Caserta M, Romero AG. A novel approach to forecast surgery durations using machine learning techniques. Health Care Manag Sci. 2024;27:313–327. doi: 10.1007/s10729-024-09681-8
- ShahabiKargar Z, Khanna S., Good N, et al. Predicting procedure duration to improve scheduling of elective surgery. Lecture Notes in Computer Science. 2014; 8862:998–1009. doi: 10.1007/978-3-319-13560-1_86
- Hassanzadeh H, Boyle J, Khanna S, Biki B, Syed F. Daily surgery caseload prediction: towards improving operating theatre efficiency. BMC Med Inform Decis Mak. 2022;22(1):151. doi: 10.1186/s12911-022-01893-8
- Riahi V, Hassanzadeh H, Khanna S, et al. Improving preoperative prediction of surgery duration. BMC Health Serv Res. 2023;23:1343. doi: 10.1186/s12913-023-10264-6
- Bellini V, Russo M, Domenichetti T, et al. Artificial intelligence in operating room management. J Med Syst. 2024;48:19. doi: 10.1007/s10916-024-02038-2
- Javaid M, Haleem A, Singh RP. ChatGPT for healthcare services: An emerging stage for an innovative perspective. BenchCouncil Trans. Benchmarks Stand Eval. 2023;3(1):100105. doi: 10.1016/j.tbench.2023.100105
- Letourneau-Guillon L, Camirand D, Guilbert F, Forghani R. Artificial intelligence applications for workflow, process optimization and predictive analytics. Neuroimaging Clin N Am. 2020;30(4):e1–e15. doi: 10.1016/j.nic.2020.08.008
- Dos Santos FC, Johnson LG, Madandola OO, et al. An example of leveraging AI for documentation: ChatGPT-generated nursing care plan for an older adult with lung cancer. J Am Med Inform Assoc. 2024;31(9):2089–2096. doi: 10.1093/jamia/ocae116
- Pressman SM, Borna S, Gomez-Cabello CA, et al. Clinical and surgical applications of large language models: a systematic review. J Clin Med. 2024;13(11):3041. doi: 10.3390/jcm13113041
- Mehdian R, Howard M. Artificial intelligence in trauma and orthopedics. In: Artificial intelligence in medicine. Lidströmer N, Ashrafian H, editors. Springer Nature Switzerland; 2022. Р. 873–886. doi: 10.1007/978-3-030-64573-1_256
- Pankhania M. Artificial intelligence in musculoskeletal radiology: past, present, and future. Indian J Musculoskelet Radiol. 2020;2(2):89–96. doi: 10.25259/IJMSR_62_2020
- Ajmera P, Kharat A, Botchu R, et al. Real-world analysis of artificial intelligence in musculoskeletal trauma. J Clin Orthop Trauma. 2021;22:101573. doi: 10.1016/j.jcot.2021.101573
- Kurmis AP, Ianunzio JR. Artificial intelligence in orthopedic surgery: evolution, current state and future directions. Arthroplasty. 2022;4(1):9. doi: 10.1186/s42836-022-00112-z
- Merali ZA, Colak E, Wilson JR. Applications of machine learning to imaging of spinal disorders: current status and future directions. Global Spine J. 2021;11(1_suppl):23S–29S. doi: 10.1177/2192568220961353
- Dai G, Su J, Zhang M, et al. A novel structure preserving generative adversarial network for CT to MR modality translation of spine. Neural Comput Applic. 2024;36:4101–4114. doi: 10.1007/s00521-023-09254-w
- Komeili A, Westover L, Parent EC, et al. Monitoring for idiopathic scoliosis curve progression using surface topography asymmetry analysis of the torso in adolescents. Spine J. 2015;15(4):743–751. doi: 10.1016/j.spinee.2015.01.018
- Anwar A, Zhang Y, Zhang Z, Li J. Artificial intelligence technology improves the accuracy of preoperative planning in primary total hip arthroplasty. Asian J Surg. 2024;47(7):2999–3006. doi: 10.1016/j.asjsur.2024.01.133
- Abel F, Lebl DR, Gorgy G, et al. Deep-learning reconstructed lumbar spine 3D MRI for surgical planning: pedicle screw placement and geometric measurements compared to CT. Eur Spine J. 2024;33(11):4144–4154. doi: 10.1007/s00586-023-08123-3
- Racadio JM, Nachabe R, Homan R, et al. Augmented reality on a C-arm system: a preclinical assessment for percutaneous needle localization. Radiology. 2016;281(1):249–255. doi: 10.1148/radiol.2016151040
- Nam CH, Lee SC, Kim JH, et al. Robot-assisted total knee arthroplasty improves mechanical alignment and accuracy of component positioning compared to the conventional technique. J Exp Orthop. 2022;9(1):108. doi: 10.1186/s40634-022-00546-z
- Dennler C, Jaberg L, Spirig J, et al. Augmented reality-based navigation increases precision of pedicle screw insertion. J Orthop Surg Res. 2020;15(1):174. doi: 10.1186/s13018-020-01690-x
- Holden MA, Haywood KL, Potia TA, et al. Recommendations for exercise adherence measures in musculoskeletal settings: a systematic review and consensus meeting. Syst Rev. 2014;3(1):10. doi: 10.1186/2046-4053-3-10
- McDermott ER, DeFoor MT, Dekker TJ, DePhillipo NN. Artificial intelligence in rehabilitation. In: Artificial intelligence in orthopaedic surgery made easy. Familiari F, Galasso O, Gasparini G, editors. Springer; 2024. Р. 197–204. doi: 10.1007/978-3-031-70310-2_15
- Khosravi B, Rouzrokh P, Erickson BJ, et al. Analyzing racial differences in imaging joint replacement registries using generative artificial intelligence: advancing orthopaedic data equity. Arthroplast Today. 2024;29:101503. doi: 10.1016/j.artd.2024.101503
- Ahn G, Choi BS, Ko S, et al. High-resolution knee plain radiography image synthesis using style generative adversarial network adaptive discriminator augmentation. J Orthop Res. 2023;41(1):84–93. doi: 10.1002/jor.25325
- Na L, Yang C, Lo CC, et al. Feasibility of reidentifying individuals in large National Physical Activity data sets from which protected health information has been removed with use of machine learning. JAMA Netw Open. 2018;1(8):e186040. doi: 10.1001/jamanetworkopen.2018.6040
- Sahni N, Stein G, Zemmel R, Cutler DM. The potential impact of artificial intelligence on healthcare spending. NBER Working Paper No. 30857, 2023. Available from: https://www.nber.org/system/files/working_papers/w30857/w30857.pdf Accessed: 22.11.2024
Дополнительные файлы
