Современные методы визуализации в диагностике, стадиро- вании и выработке тактики лечения первичных злокачественных опухолей костей. Часть I

Обложка

Цитировать

Полный текст

Аннотация

На сегодняшний день в арсенале онкологов имеется немало методов диагностики, которые позволяют определить не только структурные, но и функциональные характеристики опухоли. В статье представлены возможности современных технологий медицинской визуализации, используемых в диагностике, определении стадии заболевания и эффективности неоадьювантной химиотерапии у пациентов с саркомами костей высокой степени (G3-G4) злокачественности.

Об авторах

Геннадий Николаевич Мачак

ФГБУ «Центральный научно-исследовательский институт травматологии и ортопедии им. Н.Н. Приорова» Минздрава России

Email: machak.gennady@mail.ru
доктор мед. наук, врач-онколог ЦИТО; Тел.: +7 (965) 350-00-77. Москва, РФ; 127299, Москва, ул. Приорова, д. 10, ЦИТО

А. К Морозов

ФГБУ «Центральный научно-исследовательский институт травматологии и ортопедии им. Н.Н. Приорова» Минздрава России

доктор мед. наук, зав. отделением лучевой диагностики ЦИТО Москва, РФ

А. И Снетков

ФГБУ «Центральный научно-исследовательский институт травматологии и ортопедии им. Н.Н. Приорова» Минздрава России

доктор мед. наук, профессор, зав. отделением детской ортопедии ЦИТО Москва, РФ

И. Н Карпов

ФГБУ «Центральный научно-исследовательский институт травматологии и ортопедии им. Н.Н. Приорова» Минздрава России

канд. мед. наук, старший науч. сотр. отделения лучевой диагностики ЦИТО Москва, РФ

Н. В Кочергина

ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России

доктор мед. наук, профессор, ведущий науч. сотр. НИИ клинической и экспериментальной радиологии РОНЦ им. Н.Н. Блохина Москва, РФ

А. Б Блудов

ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России

канд. мед. наук, науч. сотр. РОНЦ им. Н.Н. Блохина Москва, РФ

А. Д Рыжков

ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России

канд. мед. наук, РОНЦ им. Н.Н. Блохина Москва, РФ

Список литературы

  1. Peller P.J. Role of positron emission tomography/computed tomography in bonemalignancies. Radiol. Clin. North Am. 2013; 51 (5): 845-64.
  2. Costelloe C.M., Chuang H.H., Madewell J.E. FDG PET/CT of primary bone tumors. AJR Am. J. Roentgenol. 2014; 202 (6): W521-31.
  3. Tian R., Su M., Tian Y., Li F., Li L., Kuang A., Zeng J. Dual-time point PET/CT with F-18 FDG for the differentiation of malignant and benign bone lesions. Skeletal Radiol. 2009; 38 (5): 451-8.
  4. Liu F., Zhang Q., Zhu D., Li Z., Li J., Wang B. et al. Performance Of Positron Emission Tomography and Positron Emission Tomography/Computed Tomography Using Fluorine-18-Fluorodeoxyglucose For The Diagnosis, Staging, and Recurrence Assessment of Bone Sarcoma: A Systematic Review and Meta-Analysis. Medicine (Baltimore). 2015; 94 (36): e1462.
  5. Мачак Г.Н. Современные возможности и перспективы комбинированного лечения остеосаркомы: Дис. … д-ра мед. наук. М.; 2007.
  6. Andersen K.F., Fuglo H.M., Rasmussen S.H., Petersen M.M., Loft A. Semi-Quantitative Calculations of Primary Tumor Metabolic Activity Using F-18 FDG PET/CT as a Predictor of Survival in 92 Patients With High-Grade Bone or Soft Tissue Sarcoma. Medicine (Baltimore). 2015; 94 (28): e1142.
  7. Costelloe C.M., Macapinlac H.A., Madewell J.E., Fitzgerald N.E., Mawlawi O.R., Rohren E.M. et al. 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J. Nucl. Med. 2009; 50 (3): 340-7.
  8. Fuglø H.M., Jørgensen S.M., Loft A., Hovgaard D., Petersen M.M. The diagnostic and prognostic value of 18F-FDG PET/CT in the initial assessment of high-grade bone and soft tissue sarcoma. A retrospective study of 89 patients. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39 (9): 1416-24.
  9. Hawkins D.S., Conrad E.U. 3rd, Butrynski J.E., Schuetze S.M., Eary J.F. [F-18]-fluorodeoxy-D-glucose-positron emission tomography response is associated with outcome for extremity osteosarcoma in children and young adults. Cancer. 2009; 115 (15): 3519-25.
  10. Kim D.H., Kim S.Y., Lee H.J., Song B.S., Kim D.H., Cho J.B. et al. Assessment of Chemotherapy Response Using FDG-PET in Pediatric Bone Tumors: A Single Institution Experience. Cancer Res. Treat. 2011; 43 (3): 170-5.
  11. Becher S., Oskouei S. PET Imaging in Sarcoma. Orthop. Clin. North Am. 2015; 46 (3): 409-15.
  12. Enneking W.F. A system of staging musculoskeletal neoplasms. Clin. Orthop. Relat. Res. 1986; (204): 9-24.
  13. Buchbender C., Heusner T.A., Lauenstein T.C., Bockisch A., Antoch G. Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J. Nucl. Med. 2012; 53 (8): 1244-52.
  14. Völker T., Denecke T., Steffen I., Misch D., Schönberger S., Plotkin M. et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J. Clin. Oncol. 2007; 25 (34): 5435-41.
  15. Quartuccio N., Treglia G., Salsano M., Mattoli M.V., Muoio B., Piccardo A. et al. The role of Fluorine-18-Fluorodeoxyglucose positron emission tomography in staging and restaging of patients with osteosarcoma. Radiol. Oncol. 2013; 47 (2): 97-102.
  16. Cistaro A., Lopci E., Gastaldo L., Fania P., Brach Del Prever A., Fagioli F. The role of 18F-FDG PET/CT in the metabolic characterization of lung nodules in pediatric patients with bone sarcoma. Pediatr. Blood Cancer. 2012; 59 (7): 1206-10.
  17. Iagaru A., Chawla S., Menendez L., Conti P.S. 18F-FDG PET and PET/CT for detection of pulmonary metastases from musculoskeletal sarcomas. Nucl. Med. Commun. 2006; 27 (10): 795-802.
  18. Quartuccio N., Fox J., Kuk D., Wexler L.H., Baldari S., Cistaro A., Schöder H. Pediatric bone sarcoma: diagnostic performance of 18F-FDG PET/CT versus conventional imaging for initial staging and follow-up. AJR Am. J. Roentgenol. 2015; 204 (1): 153-60.
  19. Byun B.H., Kong C.B., Lim I., Kim B.I., Choi C.W., Song W.S. et al. Comparison of (18)F-FDG PET/CT and (99 m)Tc-MDP bone scintigraphy for detection of bone metastasis in osteosarcoma. Skeletal Radiol. 2013; 42 (12): 1673-81.
  20. Daldrup-Link H.E., Franzius C., Link T.M., Laukamp D., Sciuk J., Jürgens H. et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am. J. Roentgenol. 2001; 177 (1): 229-36.
  21. Newman E.N., Jones R.L., Hawkins D.S. An evaluation of [F-18]-fluorodeoxy-D-glucose positron emission tomography, bone scan, and bone marrow aspiration/biopsy as staging investigations in Ewing sarcoma. Pediatr. Blood Cancer. 2013; 60 (7): 1113-7.
  22. Klenk C., Gawande R., Uslu L., Khurana A., Qiu D., Quon A. et al. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol. 2014; 15 (3): 275-85.
  23. Mentzel H.J., Kentouche K., Sauner D., Fleischmann C., Vogt S., Gottschild D. et al. Comparison of whole-body STIR-MRI and 99mTc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions. Eur. Radiol. 2004; 14 (12): 2297-302.
  24. Balaji R. Diagnostic accuracy of whole-body diffusion imaging with background signal suppression(DWIBS) for detection of malignant tumours:a comparison with PET/CT Proc ECR 2012 meeting; poster C-1422. doi: 10.1594/ecr2012/C-1422
  25. Bickelhaupt S., Laun F.B., Tesdorff J., Lederer W., Daniel H., Stieber A. et al. Fast and noninvasive characterization of suspicious lesions detected at breast cancer X-ray screening: capability of diffusion-weighted mr imaging with MIPs. Radiology. 2016; 278 (3): 689-97.
  26. Stéphane V., Samuel B., Vincent D., Joelle G., Remy P., Francois G.G., Jean-Pierre T. Comparison of PET-CT and magnetic resonance diffusion weighted imaging with body suppression (DWIBS) for initial staging of malignant lymphomas. Eur. J. Radiol. 2013; 82 (11): 2011-7.
  27. Tomizawa M., Shinozaki F., Uchida Y., Uchiyama K., Fugo K., Sunaoshi T. et al. Diffusion-weighted whole-body imaging with background body signal suppression/T2 image fusion and positron emission tomography/computed tomography of upper gastrointestinal cancers. Abdom. Imaging. 2015; 40 (8): 3012-9.
  28. Xu L., Tian J., Liu Y., Li C. Accuracy of diffusion-weighted (DW) MRI with background signal suppression (MR-DWIBS) in diagnosis of mediastinal lymph node metastasis of nonsmall-cell lung cancer (NSCLC). J. Magn. Reson. Imaging. 2014; 40 (1): 200-5.
  29. Bielack S.S., Smeland S., Whelan J.S., Marina N., Jovic G., Hook J.M. et al. Methotrexate, Doxorubicin, and Cisplatin (MAP) Plus Maintenance Pegylated Interferon Alfa-2b Versus MAP Alone in Patients With Resectable High-Grade Osteosarcoma and Good Histologic Response to Preoperative MAP: First Results of the EURAMOS-1 Good Response Randomized Controlled Trial. J. Clin. Oncol. 2015; 33 (20): 2279-87.
  30. Мачак Г.Н., Кочергина Н.В., Сенько О.В., Кузнецова А.В. Клинико-рентгенологические критерии оценки риска на фоне предоперационной химиотерапии остеосаркомы. Вопросы онкологии. 2005; 51 (3): 322-7.
  31. Fuchs N., Bielack S.S., Epler D., Bieling P., Delling G., Körholz D. et al. Long-term results of the co-operative German-Austrian-Swiss osteosarcoma study group's protocol COSS-86 of intensive multidrug chemotherapy and surgery for osteosarcoma of the limbs. Ann. Oncol. 1998; 9 (8): 893-9.
  32. Hugate R.R., Wilkins R.M., Kelly C.M., Madsen W., Hinshaw I., Camozzi A.B. Intraarterial chemotherapy for extremity osteosarcoma and MFH in adults. Clin. Orthop. Relat. Res. 2008; 466 (6): 1292-301
  33. Ku G.Y., Kriplani A., Janjigian Y.Y., Kelsen D.P., Rusch V.W., Bains M. et al. Change in chemotherapy during concurrent radiation followed by surgery after a suboptimal positron emission tomography response to induction chemotherapy improves outcomes for locally advanced esophageal adenocarcinoma Cancer. 2016; 122 (13): 2083-90. doi: 10.1002/cncr.30028.
  34. Press O.W., Li H., Schöder H., Straus D.J., Moskowitz C.H., LeBlanc M. et al. US intergroup trial of response-adapted therapy for stage III to IV Hodgkin Lymphoma using early interim fluorodeoxyglucose-positron emission tomography imaging: southwest oncology group s0816. J. Clin. Oncol. 2016; 34 (17): 2020-7.
  35. Rigter L.S., Loo C.E., Linn S.C., Sonke G.S., van Werkhoven E., Lips E.H. et al. Neoadjuvant chemotherapy adaptation and serial MRI response monitoring in ER-positive HER2-negative breast cancer. Br. J. Cancer. 2013; 109 (12): 2965-72.
  36. Zinzani P.L., Broccoli A., Gioia D.M., Castagnoli A., Ciccone G., Evangelista A. et al. Interim positron emission tomography response-adapted therapy in advanced-stage Hodgkin lymphoma: final results of the phase II part of the hd0801 study. J Clin Oncol. 2016; 34 (12): 1376-85.
  37. De Marchi A., Prever E.B., Cavallo F., Pozza S., Linari A., Lombardo P. et al. Perfusion pattern and time of vascularisation with CEUS increase accuracy in differentiating between benign and malignant tumours in 216 musculoskeletal soft tissue masses. Eur. J. Radiol. 2015; 84 (1): 142-50.
  38. Блудов А.Б. Роль методов лучевой диагностики в оценки эффективности предоперационной химиотерапии у больных с саркомами костей: Дис. … канд. мед. наук. М.; 2013.
  39. Taylor J.S., Reddick W.E. Dynamic contrast-enhanced MR imaging in musculoskeletal tumors. In: Jackson A., Buckley D.L., Parker G.J.M., eds. Dynamic contrast-enhanced magnetic resonance imaging in oncology. Springer Berlin Heidelberg New York; 2005: 215-38.
  40. Uhl M., Saueressig U., van Buiren M., Kontny U., Niemeyer C., Köhler G. et al. Osteosarcoma: preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Invest. Radiol. 2006; 41 (8): 618-23.
  41. Benz M.R., Evilevitch V., Allen-Auerbach M.S., Eilber F.C., Phelps M.E., Czernin J., Weber W.A. Treatment monitoring by 18F-FDG PET/CT in patients with sarcomas: interobserver variability of quantitative parameters in treatment-induced changes in histopathologically responding and nonresponding tumors. J. Nucl. Med. 2008; 49 (7): 1038-46.
  42. Gupta K., Pawaskar A., Basu S., Rajan M.G., Asopa R.V., Arora B. et al. Potential role of FDG PET imaging in predicting metastatic potential and assessment of therapeutic response to neoadjuvant chemotherapy in Ewing sarcoma family of tumors. Clin. Nucl. Med. 2011; 36 (11): 973-7.
  43. Costelloe C.M., Raymond A.K., Fitzgerald N.E., Mawlawi O.R., Nunez R.F., Madewell J.E. et al. Tumor necrosis in osteosarcoma: inclusion of the point of greatest metabolic activity from F-18 FDG PET/CT in the histopathologic analysis. Skeletal Radiol. 2010; 39 (2): 131-40.
  44. Franzius C., Bielack S., Flege S., Sciuk J., Jürgens H., Schober O. Prognostic significance of (18)F-FDG and (99m)Tc-methylene diphosphonate uptake in primary osteosarcoma. J. Nucl. Med. 2002; 43 (8): 1012-7.
  45. Hawkins D.S., Schuetze S.M., Butrynski J.E., Rajendran J.G., Vernon C.B., Conrad E.U. 3rd, Eary J.F. [18F] Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J. Clin. Oncol. 2005; 23 (34): 8828-34.
  46. Bajpai J., Kumar R., Sreenivas V., Sharma M.C., Khan S.A., Rastogi S. et al. Prediction of chemotherapy response by PET-CT in osteosarcoma: correlation with histologic necrosis. J. Pediatr. Hematol. Oncol. 2011; 33 (7): e271-8.
  47. Byun B.H., Kong C.B., Lim I., Kim B.I., Choi C.W., Song W.S. et al. Early response monitoring to neoadjuvant chemotherapy in osteosarcoma using sequential 18F-FDG PET/CT and MRI. Eur. J. Nucl. Med. Mol. Imaging. 2014; 41 (8): 1553-62.
  48. Byun B.H., Kim S.H., Lim S.M., Lim I., Kong C.B., Song W.S. et al. Prediction of response to neoadjuvant chemotherapy in osteosarcoma using dual-phase (18)F-FDG PET/CT. Eur. Radiol. 2015; 25 (7): 2015-24.
  49. Denecke T., Hundsdörfer P., Misch D., Steffen I.G., Schönberger S., Furth C. et al. Assessment of histological response of paediatric bone sarcomas using FDG PET in comparison to morphological volume measurement and standardized MRI parameters. Eur. J. Nucl. Med. Mol. Imaging. 2010; 37 (10): 1842-53.
  50. Gaston L.L., Di Bella C., Slavin J., Hicks R.J., Choong P.F. 18F-FDG PET response to neoadjuvant chemotherapy for Ewing sarcoma and osteosarcoma are different. Skeletal Radiol. 2011; 40 (8): 1007-15.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Эко-Вектор", 2016



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».