Structure of the Long-Living Elements of Solar Granulation
- Authors: Baran O.A.1, Stodilka M.I.1, Prysiazhnyi A.I.1
-
Affiliations:
- Astronomical Observatory
- Issue: Vol 34, No 1 (2018)
- Pages: 13-18
- Section: Solar Physics
- URL: https://journal-vniispk.ru/0884-5913/article/view/178022
- DOI: https://doi.org/10.3103/S0884591318010026
- ID: 178022
Cite item
Abstract
Spatial and temporal variations in thermodynamic and kinematic parameters of structural elements of solar granulation are investigated by solving the inverse nonequilibrium radiative transfer problem using the observational data from the Vacuum Tower Telescope (duration of observations 2.6 h). In the lower photosphere, we have detected long-living (with lifetime up to 1.5 h) structures—trees of fragmenting granules. They occur as a result of the division of an ascending granular flow into several fragments, which can be repeated multiple times. We have found that approximately 67% of the regions with the highest positive variations of pressure correspond to the time and place of fragmentation of granular flows; approximately 12% of the regions correspond to the approach of adjacent structures.
Keywords
About the authors
O. A. Baran
Astronomical Observatory
Author for correspondence.
Email: lesiaab@gmail.com
Ukraine, Lviv, 79005
M. I. Stodilka
Astronomical Observatory
Email: lesiaab@gmail.com
Ukraine, Lviv, 79005
A. I. Prysiazhnyi
Astronomical Observatory
Email: lesiaab@gmail.com
Ukraine, Lviv, 79005
Supplementary files
