Compressively Sampled MR Image Reconstruction Using POCS with g-Factor as Regularization Parameter
- 作者: Kaleem M.1, Qureshi M.1, Omer H.1
-
隶属关系:
- COMSATS Institute of Information Technology
- 期: 卷 47, 编号 1 (2016)
- 页面: 13-22
- 栏目: Article
- URL: https://journal-vniispk.ru/0937-9347/article/view/247421
- DOI: https://doi.org/10.1007/s00723-015-0725-9
- ID: 247421
如何引用文章
详细
Compressed sensing (CS) is an effective method to reduce k-space sampling for accelerated MRI data acquisition and reconstruction. Iterative-shrinkage algorithms provide an efficient numerical technique to minimize mixed ll − l2 norm minimization problems. These algorithms utilize a regularization parameter to introduce sparsity in the solution for CS recovery problem. This paper introduces a new method based on geometry factor (g-Factor) as an adaptive regularization parameter. For this purpose, Projection onto Convex Sets (POCS) algorithm is modified to include regularization term in the form of g-Factor and a priori constraint (data consistency) for image reconstruction from the highly under-sampled data. The performance of the proposed algorithm is verified using simulated and actual MRI data. The results show that g-Factor as a regularization parameter provides better image reconstruction from the highly under-sampled data as compared to a fixed regularization parameter in POCS.
作者简介
Muhammad Kaleem
COMSATS Institute of Information Technology
编辑信件的主要联系方式.
Email: kaleem.arfeen@gmail.com
巴基斯坦, Islamabad
Mahmood Qureshi
COMSATS Institute of Information Technology
Email: kaleem.arfeen@gmail.com
巴基斯坦, Islamabad
Hammad Omer
COMSATS Institute of Information Technology
Email: kaleem.arfeen@gmail.com
巴基斯坦, Islamabad
补充文件
