Reconstruction of Complex Vasculature by Varying the Slope of the Scan Plane in High-Field Magnetic Resonance Imaging


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Reconstruction of vascular net of small laboratory animals from magnetic resonance imaging magnetic resonance imaging (MRI) data is associated with some problems. First of all this is due to the physics of nuclear magnetic resonance nuclear magnetic resonance signal registration. Scanner is sensible to the blood flow propagating through the section and shows real situation about vessel presence only if it is perpendicular to the scanning plane. If the vessel is parallel to the scanning plane scanner does not shows vessel presence. This circumstance causes the fragmentation of reconstructed vascular net. Despite the fact that all vessels in brain must be connected reconstructed vascular net consists of several fragments. We propose new algorithm allowing for reconstruction fragmentation-free vascular net according to the data of MRI scanner. Our approach is based on multiple scanning, object under consideration is probed by several sets of parallel planes. Our method allows for elimination or significant reduction mentioned disadvantage. The algorithm is applied to real MRI data of small laboratory animals and shows good results.

About the authors

S. V. Maltseva

Sobolev Institute of Mathematics SB RAS; Lavrentyev Institute of Hydrodynamics SB RAS; Novosibirsk State University

Author for correspondence.
Email: sv_maltseva@mail.ru
Russian Federation, Novosibirsk; Novosibirsk; Novosibirsk

A. A. Cherevko

Lavrentyev Institute of Hydrodynamics SB RAS; Novosibirsk State University; Institute International Tomography Center SB RAS

Email: sv_maltseva@mail.ru
Russian Federation, Novosibirsk; Novosibirsk; Novosibirsk

A. K. Khe

Lavrentyev Institute of Hydrodynamics SB RAS; Novosibirsk State University; Institute International Tomography Center SB RAS

Email: sv_maltseva@mail.ru
Russian Federation, Novosibirsk; Novosibirsk; Novosibirsk

A. E. Akulov

Institute International Tomography Center SB RAS; Institute of Cytology and Genetics SB RAS

Email: sv_maltseva@mail.ru
Russian Federation, Novosibirsk; Novosibirsk

A. A. Savelov

Institute International Tomography Center SB RAS

Email: sv_maltseva@mail.ru
Russian Federation, Novosibirsk

A. A. Tulupov

Novosibirsk State University; Institute International Tomography Center SB RAS

Email: sv_maltseva@mail.ru
Russian Federation, Novosibirsk; Novosibirsk

E. Yu. Derevtsov

Sobolev Institute of Mathematics SB RAS; Novosibirsk State University

Email: sv_maltseva@mail.ru
Russian Federation, Novosibirsk; Novosibirsk

M. P. Moshkin

Novosibirsk State University; Institute International Tomography Center SB RAS; Institute of Cytology and Genetics SB RAS

Email: sv_maltseva@mail.ru
Russian Federation, Novosibirsk; Novosibirsk; Novosibirsk

A. P. Chupakhin

Lavrentyev Institute of Hydrodynamics SB RAS; Novosibirsk State University; Institute International Tomography Center SB RAS

Email: sv_maltseva@mail.ru
Russian Federation, Novosibirsk; Novosibirsk; Novosibirsk

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Springer-Verlag Wien