Singular Value Decomposition Using Jacobi Algorithm in pMRI and CS
- Авторы: Qazi S.A.1, Saeed A.1, Nasir S.1, Omer H.1
- 
							Учреждения: 
							- Department of Electrical Engineering, COMSATS Institute of Information Technology
 
- Выпуск: Том 48, № 5 (2017)
- Страницы: 461-471
- Раздел: Original Paper
- URL: https://journal-vniispk.ru/0937-9347/article/view/247690
- DOI: https://doi.org/10.1007/s00723-017-0874-0
- ID: 247690
Цитировать
Аннотация
Parallel magnetic resonance imaging (pMRI) and compressed sensing (CS) have been recently used to accelerate data acquisition process in MRI. Matrix inversion (for rectangular matrices) is required to reconstruct images from the acquired under-sampled data in various pMRI algorithms (e.g., SENSE, GRAPPA) and CS. Singular value decomposition (SVD) provides a mechanism to accurately estimate pseudo-inverse of a rectangular matrix. This work proposes the use of Jacobi SVD algorithm to reconstruct MR images from the acquired under-sampled data both in pMRI and in CS. The use of Jacobi SVD algorithm is proposed in advance MRI reconstruction algorithms, including SENSE, GRAPPA, and low-rank matrix estimation in L + S model for matrix inversion and estimation of singular values. Experiments are performed on 1.5T human head MRI data and 3T cardiac perfusion MRI data for different acceleration factors. The reconstructed images are analyzed using artifact power and central line profiles. The results show that the Jacobi SVD algorithm successfully reconstructs the images in SENSE, GRAPPA, and L + S algorithms. The benefit of using Jacobi SVD algorithm for MRI image reconstruction is its suitability for parallel computation on GPUs, which may be a great help in reducing the image reconstruction time.
Об авторах
Sohaib Qazi
Department of Electrical Engineering, COMSATS Institute of Information Technology
							Автор, ответственный за переписку.
							Email: sohaibqazimm@gmail.com
				                					                																			                												                	Пакистан, 							Islamabad						
Abeera Saeed
Department of Electrical Engineering, COMSATS Institute of Information Technology
														Email: sohaibqazimm@gmail.com
				                					                																			                												                	Пакистан, 							Islamabad						
Saima Nasir
Department of Electrical Engineering, COMSATS Institute of Information Technology
														Email: sohaibqazimm@gmail.com
				                					                																			                												                	Пакистан, 							Islamabad						
Hammad Omer
Department of Electrical Engineering, COMSATS Institute of Information Technology
														Email: sohaibqazimm@gmail.com
				                					                																			                												                	Пакистан, 							Islamabad						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					