Principal vectors of a nonlinear finite-dimensional eigenvalue problem


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In a finite-dimensional linear space, consider a nonlinear eigenvalue problem analytic with respect to its spectral parameter. The notion of a principal vector for such a problem is examined. For a linear eigenvalue problem, this notion is identical to the conventional definition of principal vectors. It is proved that the maximum number of linearly independent eigenvectors combined with principal (associated) vectors in the corresponding chains is equal to the multiplicity of an eigenvalue. A numerical method for constructing such chains is given.

作者简介

A. Abramov

Dorodnicyn Computing Center; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: alalabr@ccas.ru
俄罗斯联邦, ul. Vavilova 40, Moscow, 119333; Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700

L. Yukhno

Institute of Applied Mathematics; Moscow Engineering Physics Institute (State University)

Email: alalabr@ccas.ru
俄罗斯联邦, Miusskaya pl. 4a, Moscow, 125047; Kashirskoe sh. 31, Moscow, 115409

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016