Principal vectors of a nonlinear finite-dimensional eigenvalue problem
- 作者: Abramov A.A.1,2, Yukhno L.F.3,4
-
隶属关系:
- Dorodnicyn Computing Center
- Moscow Institute of Physics and Technology
- Institute of Applied Mathematics
- Moscow Engineering Physics Institute (State University)
- 期: 卷 56, 编号 2 (2016)
- 页面: 185-190
- 栏目: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/178252
- DOI: https://doi.org/10.1134/S0965542516020032
- ID: 178252
如何引用文章
详细
In a finite-dimensional linear space, consider a nonlinear eigenvalue problem analytic with respect to its spectral parameter. The notion of a principal vector for such a problem is examined. For a linear eigenvalue problem, this notion is identical to the conventional definition of principal vectors. It is proved that the maximum number of linearly independent eigenvectors combined with principal (associated) vectors in the corresponding chains is equal to the multiplicity of an eigenvalue. A numerical method for constructing such chains is given.
作者简介
A. Abramov
Dorodnicyn Computing Center; Moscow Institute of Physics and Technology
编辑信件的主要联系方式.
Email: alalabr@ccas.ru
俄罗斯联邦, ul. Vavilova 40, Moscow, 119333; Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700
L. Yukhno
Institute of Applied Mathematics; Moscow Engineering Physics Institute (State University)
Email: alalabr@ccas.ru
俄罗斯联邦, Miusskaya pl. 4a, Moscow, 125047; Kashirskoe sh. 31, Moscow, 115409
补充文件
