On the structure of solutions of a class of hyperbolic systems with several spatial variables in the far field
- Авторлар: Nesterov A.V.1
-
Мекемелер:
- Moscow City Pedagogical University
- Шығарылым: Том 56, № 4 (2016)
- Беттер: 626-636
- Бөлім: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/178395
- DOI: https://doi.org/10.1134/S0965542516040126
- ID: 178395
Дәйексөз келтіру
Аннотация
An asymptotic expansion of the solution to the Cauchy problem for a class of hyperbolic weakly nonlinear systems with many spatial variables is constructed. A parabolic quasilinear equation describing the behavior of the solution at asymptotically large values of the independent variables is obtained. The pseudo-diffusion processes that depend on the relationship between the number of equations and the number of spatial variables are analyzed. The structure of the subspace in which there are pseudo-diffusion evolution processes of the solution in the far field is described.
Авторлар туралы
A. Nesterov
Moscow City Pedagogical University
Хат алмасуға жауапты Автор.
Email: andrenesterov@yandex.ru
Ресей, Vtoroy Sel’skokhozyaistvennyi proezd 4, Moscow, 129226
Қосымша файлдар
