Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter
- Авторы: Akulenko L.D.1,2,3, Gavrikov A.A.3, Nesterov S.V.3
-
Учреждения:
- Moscow Institute of Physics and Technology
- Bauman Moscow State Technical University
- Institute for Problems of Mechanics
- Выпуск: Том 57, № 9 (2017)
- Страницы: 1484-1497
- Раздел: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/179380
- DOI: https://doi.org/10.1134/S0965542517090020
- ID: 179380
Цитировать
Аннотация
A numerical-analytical iterative method is proposed for solving generalized self-adjoint regular vector Sturm–Liouville problems with Dirichlet boundary conditions. The method is based on eigenvalue (spectral) correction. The matrix coefficients of the equations are assumed to be nonlinear functions of the spectral parameter. For a relatively close initial approximation, the method is shown to have second-order convergence with respect to a small parameter. Test examples are considered, and the model problem of transverse vibrations of a hinged rod with a variable cross section is solved taking into account its rotational inertia.
Об авторах
L. Akulenko
Moscow Institute of Physics and Technology; Bauman Moscow State Technical University; Institute for Problems of Mechanics
Автор, ответственный за переписку.
Email: l.akulenko@bk.ru
Россия, Dolgoprudnyi, Moscow oblast, 141701; Moscow, 105005; Moscow, 119526
A. Gavrikov
Institute for Problems of Mechanics
Email: l.akulenko@bk.ru
Россия, Moscow, 119526
S. Nesterov
Institute for Problems of Mechanics
Email: l.akulenko@bk.ru
Россия, Moscow, 119526
Дополнительные файлы
