Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter
- 作者: Akulenko L.D.1,2,3, Gavrikov A.A.3, Nesterov S.V.3
-
隶属关系:
- Moscow Institute of Physics and Technology
- Bauman Moscow State Technical University
- Institute for Problems of Mechanics
- 期: 卷 57, 编号 9 (2017)
- 页面: 1484-1497
- 栏目: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/179380
- DOI: https://doi.org/10.1134/S0965542517090020
- ID: 179380
如何引用文章
详细
A numerical-analytical iterative method is proposed for solving generalized self-adjoint regular vector Sturm–Liouville problems with Dirichlet boundary conditions. The method is based on eigenvalue (spectral) correction. The matrix coefficients of the equations are assumed to be nonlinear functions of the spectral parameter. For a relatively close initial approximation, the method is shown to have second-order convergence with respect to a small parameter. Test examples are considered, and the model problem of transverse vibrations of a hinged rod with a variable cross section is solved taking into account its rotational inertia.
作者简介
L. Akulenko
Moscow Institute of Physics and Technology; Bauman Moscow State Technical University; Institute for Problems of Mechanics
编辑信件的主要联系方式.
Email: l.akulenko@bk.ru
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141701; Moscow, 105005; Moscow, 119526
A. Gavrikov
Institute for Problems of Mechanics
Email: l.akulenko@bk.ru
俄罗斯联邦, Moscow, 119526
S. Nesterov
Institute for Problems of Mechanics
Email: l.akulenko@bk.ru
俄罗斯联邦, Moscow, 119526
补充文件
