Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A numerical-analytical iterative method is proposed for solving generalized self-adjoint regular vector Sturm–Liouville problems with Dirichlet boundary conditions. The method is based on eigenvalue (spectral) correction. The matrix coefficients of the equations are assumed to be nonlinear functions of the spectral parameter. For a relatively close initial approximation, the method is shown to have second-order convergence with respect to a small parameter. Test examples are considered, and the model problem of transverse vibrations of a hinged rod with a variable cross section is solved taking into account its rotational inertia.

作者简介

L. Akulenko

Moscow Institute of Physics and Technology; Bauman Moscow State Technical University; Institute for Problems of Mechanics

编辑信件的主要联系方式.
Email: l.akulenko@bk.ru
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141701; Moscow, 105005; Moscow, 119526

A. Gavrikov

Institute for Problems of Mechanics

Email: l.akulenko@bk.ru
俄罗斯联邦, Moscow, 119526

S. Nesterov

Institute for Problems of Mechanics

Email: l.akulenko@bk.ru
俄罗斯联邦, Moscow, 119526

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017