On sharp estimates of the convergence of double Fourier–Bessel series
- Авторы: Abilov V.A.1, Abilova F.V.1, Kerimov M.K.2
-
Учреждения:
- Dagestan State Technical University
- Dorodnicyn Computing Center
- Выпуск: Том 57, № 11 (2017)
- Страницы: 1735-1740
- Раздел: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/179486
- DOI: https://doi.org/10.1134/S0965542517110021
- ID: 179486
Цитировать
Аннотация
The problem of approximation of a differentiable function of two variables by partial sums of a double Fourier–Bessel series is considered. Sharp estimates of the rate of convergence of the double Fourier–Bessel series on the class of differentiable functions of two variables characterized by a generalized modulus of continuity are obtained. The proofs of four theorems on this issue, which can be directly applied to solving particular problems of mathematical physics, approximation theory, etc., are presented.
Об авторах
V. Abilov
Dagestan State Technical University
Email: comp_mat@ccas.ru
Россия, Makhachkala, Dagestan, 367015
F. Abilova
Dagestan State Technical University
Email: comp_mat@ccas.ru
Россия, Makhachkala, Dagestan, 367015
M. Kerimov
Dorodnicyn Computing Center
Автор, ответственный за переписку.
Email: comp_mat@ccas.ru
Россия, Moscow, 119333
Дополнительные файлы
