🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Inscribed Balls and Their Centers


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A ball of maximal radius inscribed in a convex closed bounded set with a nonempty interior is considered in the class of uniformly convex Banach spaces. It is shown that, under certain conditions, the centers of inscribed balls form a uniformly continuous (as a set function) set-valued mapping in the Hausdorff metric. In a finite-dimensional space of dimension n, the set of centers of balls inscribed in polyhedra with a fixed collection of normals satisfies the Lipschitz condition with respect to sets in the Hausdorff metric. A Lipschitz continuous single-valued selector of the set of centers of balls inscribed in such polyhedra can be found by solving n + 1 linear programming problems.

About the authors

M. V. Balashov

Moscow Institute of Physics and Technology

Author for correspondence.
Email: balashov73@mail.ru
Russian Federation, Dolgoprudnyi, Moscow oblast, 141700

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.