Decay of Unstable Strong Discontinuities in the Case of a Convex-Flux Scalar Conservation Law Approximated by the CABARET Scheme


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Monotonicity conditions for the CABARET scheme approximating a quasilinear scalar conservation law with a convex flux are obtained. It is shown that the monotonicity of the CABARET scheme for Courant numbers \(r \in (0.5,1]\) does not ensure the complete decay of unstable strong discontinuities. For the CABARET scheme, a difference analogue of an entropy inequality is derived and a method is proposed ensuring the complete decay of unstable strong discontinuities in the difference solution for any Courant number at which the CABARET scheme is stable. Test computations illustrating these properties of the CABARET scheme are presented.

Авторлар туралы

N. Zyuzina

Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: nzyuzina1992@gmail.com
Ресей, Novosibirsk, 630090; Novosibirsk, 630090

V. Ostapenko

Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: ostapenko_vv@ngs.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018