Dynamic Reconstruction of Disturbances in a Quasilinear Stochastic Differential Equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of reconstructing unknown inputs in a first-order quasilinear stochastic differential equation is studied by applying dynamic inversion theory. The disturbances in the deterministic and stochastic terms of the equation are simultaneously reconstructed using discrete information on some realizations of the stochastic process. The problem is reduced to an inverse one for ordinary differential equations satisfied by the expectation and variance of the original process. A finite-step software implementable solution algorithm is proposed, and its accuracy with respect to the number of measured realizations is estimated. An illustrative example is given.

作者简介

V. Rozenberg

Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: rozen@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018