Mixed Problem for a Homogeneous Wave Equation with a Nonzero Initial Velocity
- 作者: Khromov A.P.1
-
隶属关系:
- Saratov State University
- 期: 卷 58, 编号 9 (2018)
- 页面: 1531-1543
- 栏目: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/179862
- DOI: https://doi.org/10.1134/S0965542518090099
- ID: 179862
如何引用文章
详细
A mixed problem for a homogeneous wave equation with fixed ends, a summable potential, and a nonzero initial velocity is studied. Using the resolvent approach and developing the Krylov method for accelerating the convergence of Fourier series, a classical solution is obtained by the Fourier method under minimal conditions on the smoothness of the initial data and a generalized solution in the case of the initial velocity represented by an arbitrary summable function is found.
作者简介
A. Khromov
Saratov State University
编辑信件的主要联系方式.
Email: KhromovAP@info.sgu.ru
俄罗斯联邦, Saratov, 410012
补充文件
