Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Monotonic Nonlinearity
- Авторлар: Denisov I.V.1
-
Мекемелер:
- Tula State Pedagogical University
- Шығарылым: Том 58, № 4 (2018)
- Беттер: 562-571
- Бөлім: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/180159
- DOI: https://doi.org/10.1134/S0965542518040097
- ID: 180159
Дәйексөз келтіру
Аннотация
A singularly perturbed parabolic equation
\({\varepsilon ^2}\left( {{{\text{a}}^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}} - \frac{{\partial u}}{{\partial t}}} \right) = F\left( {u,x,t,\varepsilon } \right)\)![]()
is considered in a rectangle with boundary conditions of the first kind. The function F at the corner points of the rectangle is assumed to be monotonic with respect to the variable u on the interval from the root of the degenerate equation to the boundary condition. A complete asymptotic expansion of the solution as ε → 0 is constructed, and its uniformity in the closed rectangle is proven.Авторлар туралы
I. Denisov
Tula State Pedagogical University
Хат алмасуға жауапты Автор.
Email: den_tspu@mail.ru
Ресей, Tula, 300026
Қосымша файлдар
